Sayed Iman Mousavi, Michael M Lacy, Xiaobai Li, Julien Berro
{"title":"Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin-Mediated Endocytosis.","authors":"Sayed Iman Mousavi, Michael M Lacy, Xiaobai Li, Julien Berro","doi":"10.1002/cm.22002","DOIUrl":null,"url":null,"abstract":"<p><p>The actin cytoskeleton is central to force production in numerous cellular processes in eukaryotic cells. During clathrin-mediated endocytosis (CME), a dynamic actin meshwork is required to deform the membrane against high membrane tension or turgor pressure. Previous experimental work from our lab showed that several endocytic proteins, including actin and actin-interacting proteins, turn over several times during the formation of a vesicle during CME in yeast, and their dwell time distributions were reminiscent of gamma distributions with a peak around 1 s. However, the distribution for the filament cross-linking protein fimbrin contains a second peak around 0.5 s. To better understand the nature of these dwell time distributions, we developed a stochastic model for the dynamics of actin and its binding partners. Our model demonstrates that very fast actin filament disassembly is necessary to reproduce experimental dwell time distributions. Our model also predicts that actin-binding proteins bind rapidly to nascent filaments and filaments are fully decorated. Last, our model predicts that fimbrin detachment from actin endocytic structures is mechanosensitive to explain the extra peak observed in the dwell time distribution.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.22002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The actin cytoskeleton is central to force production in numerous cellular processes in eukaryotic cells. During clathrin-mediated endocytosis (CME), a dynamic actin meshwork is required to deform the membrane against high membrane tension or turgor pressure. Previous experimental work from our lab showed that several endocytic proteins, including actin and actin-interacting proteins, turn over several times during the formation of a vesicle during CME in yeast, and their dwell time distributions were reminiscent of gamma distributions with a peak around 1 s. However, the distribution for the filament cross-linking protein fimbrin contains a second peak around 0.5 s. To better understand the nature of these dwell time distributions, we developed a stochastic model for the dynamics of actin and its binding partners. Our model demonstrates that very fast actin filament disassembly is necessary to reproduce experimental dwell time distributions. Our model also predicts that actin-binding proteins bind rapidly to nascent filaments and filaments are fully decorated. Last, our model predicts that fimbrin detachment from actin endocytic structures is mechanosensitive to explain the extra peak observed in the dwell time distribution.