Compact Low-Power Interfacing and Data Reduction for Floating Active Intracortical Neural Probes with Modular Architecture.

Roman Willaredt, Christoph Grandauer, Daniel De Dorigo, Daniel Wendler, Matthias Kuhl, Yiannos Manoli
{"title":"Compact Low-Power Interfacing and Data Reduction for Floating Active Intracortical Neural Probes with Modular Architecture.","authors":"Roman Willaredt, Christoph Grandauer, Daniel De Dorigo, Daniel Wendler, Matthias Kuhl, Yiannos Manoli","doi":"10.1109/TBCAS.2025.3532465","DOIUrl":null,"url":null,"abstract":"<p><p>Host connectivity for invasive, high-density neural probes that integrate all the circuits needed for insitu digitization of brain activity in the shank requires a thin and conformal cable. To minimize tissue damage during insertion or from micro-movements during chronic use, the wiring must be constrained in size with a low number of interconnects. Reducing the number of traces results in thinner and more flexible cables and allows the data rate to be increased by using wider traces. Fewer contacts are also less susceptible to reliability issues in long-term applications. This paper presents a modular digital neural probe that embeds a two-wire bidirectional interface for host connectivity minimizing the data overhead for configuration and readout. The presented handshaking allows synchronization of multiple shanks and is designed to adapt to varying line delays caused by different cable lengths or changing environmental conditions. Data reduction based on delta encoding further increases the number of electrodes that can be read out simultaneously. The system is validated in a 192-channel neural probe fabricated in a 180nm CMOS technology with a supply voltage of 1.2 V.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3532465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Host connectivity for invasive, high-density neural probes that integrate all the circuits needed for insitu digitization of brain activity in the shank requires a thin and conformal cable. To minimize tissue damage during insertion or from micro-movements during chronic use, the wiring must be constrained in size with a low number of interconnects. Reducing the number of traces results in thinner and more flexible cables and allows the data rate to be increased by using wider traces. Fewer contacts are also less susceptible to reliability issues in long-term applications. This paper presents a modular digital neural probe that embeds a two-wire bidirectional interface for host connectivity minimizing the data overhead for configuration and readout. The presented handshaking allows synchronization of multiple shanks and is designed to adapt to varying line delays caused by different cable lengths or changing environmental conditions. Data reduction based on delta encoding further increases the number of electrodes that can be read out simultaneously. The system is validated in a 192-channel neural probe fabricated in a 180nm CMOS technology with a supply voltage of 1.2 V.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Erratum to “Design of an Extreme Low Cutoff Frequency Highpass Frontend for CMOS ISFET via Direct Tunneling Principle” IEEE Transactions on Biomedical Circuits and Systems Publication Information IEEE Circuits and Systems Society Information Guest Editorial: Ultralow-Power Technologies for Edge Computing in Human-Machine Interface Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1