Single-Cell Proteomics Using Mass Spectrometry.

ArXiv Pub Date : 2025-03-29
Amanda Momenzadeh, Jesse G Meyer
{"title":"Single-Cell Proteomics Using Mass Spectrometry.","authors":"Amanda Momenzadeh, Jesse G Meyer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell proteomics (SCP) is transforming our understanding of biological complexity by shifting from bulk proteomics, where signals are averaged over thousands of cells, to the proteome analysis of individual cells. This granular perspective reveals distinct cell states, population heterogeneity, and the underpinnings of disease pathogenesis that bulk approaches may obscure. However, SCP demands exceptional sensitivity, precise cell handling, and robust data processing to overcome the inherent challenges of analyzing picogram-level protein samples without amplification. Recent innovations in sample preparation, separations, data acquisition strategies, and specialized mass spectrometry instrumentation have substantially improved proteome coverage and throughput. Approaches that integrate complementary omics, streamline multi-step sample processing, and automate workflows through microfluidics and specialized platforms promise to further push SCP boundaries. Advances in computational methods, especially for data normalization and imputation, address the pervasive issue of missing values, enabling more reliable downstream biological interpretations. Despite these strides, higher throughput, reproducibility, and consensus best practices remain pressing needs in the field. This mini review summarizes the latest progress in SCP technology and software solutions, highlighting how closer integration of analytical, computational, and experimental strategies will facilitate deeper and broader coverage of single-cell proteomes.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell proteomics (SCP) is transforming our understanding of biological complexity by shifting from bulk proteomics, where signals are averaged over thousands of cells, to the proteome analysis of individual cells. This granular perspective reveals distinct cell states, population heterogeneity, and the underpinnings of disease pathogenesis that bulk approaches may obscure. However, SCP demands exceptional sensitivity, precise cell handling, and robust data processing to overcome the inherent challenges of analyzing picogram-level protein samples without amplification. Recent innovations in sample preparation, separations, data acquisition strategies, and specialized mass spectrometry instrumentation have substantially improved proteome coverage and throughput. Approaches that integrate complementary omics, streamline multi-step sample processing, and automate workflows through microfluidics and specialized platforms promise to further push SCP boundaries. Advances in computational methods, especially for data normalization and imputation, address the pervasive issue of missing values, enabling more reliable downstream biological interpretations. Despite these strides, higher throughput, reproducibility, and consensus best practices remain pressing needs in the field. This mini review summarizes the latest progress in SCP technology and software solutions, highlighting how closer integration of analytical, computational, and experimental strategies will facilitate deeper and broader coverage of single-cell proteomes.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞蛋白质组学使用质谱分析。
单细胞蛋白质组学(SCP)正在改变我们对生物复杂性的理解,从整体蛋白质组学(信号在数千个细胞中平均)转向单个细胞的蛋白质组学分析。这种颗粒视角揭示了不同的细胞状态、群体异质性和疾病发病机制的基础,而大量方法可能会掩盖这些基础。然而,SCP需要异常的灵敏度,精确的细胞处理和强大的数据处理,以克服在没有扩增的情况下分析皮克级蛋白质样品的固有挑战。最近在样品制备、分离、数据采集策略和专业质谱仪器方面的创新大大提高了蛋白质组的覆盖范围和通量。整合互补组学、简化多步骤样品处理以及通过微流体和专门平台自动化工作流程的方法有望进一步推动SCP的边界。计算方法的进步,特别是在数据归一化和归一化方面,解决了普遍存在的缺失值问题,实现了更可靠的下游生物解释。尽管取得了这些进展,但该领域仍然迫切需要更高的吞吐量、可重复性和一致的最佳实践。这篇综述总结了SCP技术和软件解决方案的最新进展,强调了分析、计算和实验策略的紧密结合将如何促进单细胞蛋白质组学更深入、更广泛的覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton therapy range uncertainty reduction using vendor-agnostic tissue characterization on a virtual photon-counting CT head scan. Human-like AI-based Auto-Field-in-Field Whole-Brain Radiotherapy Treatment Planning With Conversation Large Language Model Feedback. MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection. Non-dilemmatic social dynamics promote cooperation in multilayer networks. Computational Analysis of Disease Progression in Pediatric Pulmonary Arterial Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1