Unraveling the synergistic effects of Ag, Li and Sr on Zn alloys in enhancing orthopedic repair potential

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2025-03-04 DOI:10.1039/D5TB00111K
Huafang Li, Luqing Ma and Yingying Li
{"title":"Unraveling the synergistic effects of Ag, Li and Sr on Zn alloys in enhancing orthopedic repair potential","authors":"Huafang Li, Luqing Ma and Yingying Li","doi":"10.1039/D5TB00111K","DOIUrl":null,"url":null,"abstract":"<p >Recently, Li, which can greatly enhance the mechanical characteristics of zinc alloys, Ag, which has antibacterial properties, and Sr, which promotes bone formation, have been widely applied in biodegradable alloys. However, to our knowledge, there has been no research on the combined effects of Ag, Li, and Sr in zinc alloys. To address this, we have created a new quaternary alloy (Zn–3Ag–0.1Li–0.1Sr). The incorporation of Ag, Li, and Sr increased the yield strength (YS) of the at-cast (AC) zinc alloy to 188.83 ± 12.38 MPa. After extrusion and hot rolling, the strong plasticity of the alloy was further significantly enhanced, with ultimate tensile strength (UTS) exceeding 400 MPa, YS exceeding 350 MPa, and elongation (EL) greater than 50%. An <em>in vitro</em> cell study revealed that after three days of culture with a 50% extract, the proliferation rate of MC3T3-E1 cells was 101.527 ± 0.129%, and the cells maintained a healthy spindle-shaped appearance. The antibacterial experiments also demonstrated that the Zn–3Ag–0.1Li–0.1Sr quaternary alloy has strong antibacterial properties against both <em>Staphylococcus aureus</em> (<em>S. aureus</em>) and <em>Escherichia coli</em> (<em>E. coli</em>). Therefore, the biodegradable Zn–3Ag–0.1Li–0.1Sr quaternary alloy, which exhibits high strength, good cytocompatibility, and satisfactory antibacterial performance, has greater potential for application in the field of orthopedic repair.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 12","pages":" 4006-4019"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00111k","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Li, which can greatly enhance the mechanical characteristics of zinc alloys, Ag, which has antibacterial properties, and Sr, which promotes bone formation, have been widely applied in biodegradable alloys. However, to our knowledge, there has been no research on the combined effects of Ag, Li, and Sr in zinc alloys. To address this, we have created a new quaternary alloy (Zn–3Ag–0.1Li–0.1Sr). The incorporation of Ag, Li, and Sr increased the yield strength (YS) of the at-cast (AC) zinc alloy to 188.83 ± 12.38 MPa. After extrusion and hot rolling, the strong plasticity of the alloy was further significantly enhanced, with ultimate tensile strength (UTS) exceeding 400 MPa, YS exceeding 350 MPa, and elongation (EL) greater than 50%. An in vitro cell study revealed that after three days of culture with a 50% extract, the proliferation rate of MC3T3-E1 cells was 101.527 ± 0.129%, and the cells maintained a healthy spindle-shaped appearance. The antibacterial experiments also demonstrated that the Zn–3Ag–0.1Li–0.1Sr quaternary alloy has strong antibacterial properties against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Therefore, the biodegradable Zn–3Ag–0.1Li–0.1Sr quaternary alloy, which exhibits high strength, good cytocompatibility, and satisfactory antibacterial performance, has greater potential for application in the field of orthopedic repair.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Jessica Winter: Editor-in-Chief Back cover Unraveling the synergistic effects of Ag, Li and Sr on Zn alloys in enhancing orthopedic repair potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1