Nanoporous Plasmonic Microneedle Arrays Induced High-Efficiency Intracellular Delivery of Metabolism Regulating Protein

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-03-05 DOI:10.1002/smll.202412106
Zhenkai Ji, Le He, Min Sun, Mingchen Lv, Ran Chen, Chuanzhen Zhao, Liang Ma, Jiajing Cheng, Jinlong Qin, Xiaobin Xu, Zhen Fan
{"title":"Nanoporous Plasmonic Microneedle Arrays Induced High-Efficiency Intracellular Delivery of Metabolism Regulating Protein","authors":"Zhenkai Ji, Le He, Min Sun, Mingchen Lv, Ran Chen, Chuanzhen Zhao, Liang Ma, Jiajing Cheng, Jinlong Qin, Xiaobin Xu, Zhen Fan","doi":"10.1002/smll.202412106","DOIUrl":null,"url":null,"abstract":"Patterned micro/nanostructure arrays have shown the potential to effectively regulate cellular behavior, and their unique microstructure may address the limitations of conventional pore materials, leading to novel phenomena. In this work, a large-area gold micro/nano-array substrate with an average hole of ≈32 nm is designed and extensively screened. Precisely engineered nanopores on the substrate can effectively improve photothermal conversion efficiency, and instant heat dissipation in the absence of laser irradiation. The mesoporous arrays are fabricated by hybrid lithography, offering advantages such as simple processing, high reproducibility, and immense commercial potential. Notably, its heating rate is as rapid as ≈45 K µs<sup>−1</sup> at low power levels, with the cooling duration reduced to ≈50 µs after the laser irradiation. Metabolism regulatory proteins such as cytochrome C (CytoC) and β-galactosidase (β-gal) can be efficiently introduced into the U87 cell model without inducing phototoxicity or protein inactivation, maintaining catalytic activity to modulate the cellular metabolic state. This delivery platform based on transient nano-cyclones stimulating cell perturbations can be further expanded through modulated microstructures, such as delivering functional proteins or biomolecules for efficient intracellular regulation, cellular transfection, and in the future application as a potential high-throughput screening tool for clustered regularly interspaced short palindromic repeats (CAR-T) biopharmaceutical and clustered regularly interspaced short palindromic repeats (CRISPR) technologies.","PeriodicalId":228,"journal":{"name":"Small","volume":"211 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412106","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Patterned micro/nanostructure arrays have shown the potential to effectively regulate cellular behavior, and their unique microstructure may address the limitations of conventional pore materials, leading to novel phenomena. In this work, a large-area gold micro/nano-array substrate with an average hole of ≈32 nm is designed and extensively screened. Precisely engineered nanopores on the substrate can effectively improve photothermal conversion efficiency, and instant heat dissipation in the absence of laser irradiation. The mesoporous arrays are fabricated by hybrid lithography, offering advantages such as simple processing, high reproducibility, and immense commercial potential. Notably, its heating rate is as rapid as ≈45 K µs−1 at low power levels, with the cooling duration reduced to ≈50 µs after the laser irradiation. Metabolism regulatory proteins such as cytochrome C (CytoC) and β-galactosidase (β-gal) can be efficiently introduced into the U87 cell model without inducing phototoxicity or protein inactivation, maintaining catalytic activity to modulate the cellular metabolic state. This delivery platform based on transient nano-cyclones stimulating cell perturbations can be further expanded through modulated microstructures, such as delivering functional proteins or biomolecules for efficient intracellular regulation, cellular transfection, and in the future application as a potential high-throughput screening tool for clustered regularly interspaced short palindromic repeats (CAR-T) biopharmaceutical and clustered regularly interspaced short palindromic repeats (CRISPR) technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Cleanroom-Free Toolkit for Patterning Submicron-Resolution Bioelectronics on Flexibles High-Temperature Oxidation-Resistant Phenolic-Based Hybrids Enabled by Novel Organic–Inorganic Covalent–Ionic Bicontinuous Network Electrodeposited P-Doped CuNi Alloy from Deep Eutectic Solvent for Efficient and Selective Nitrate-to-Ammonia Electroreduction Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential A Universal Strategy for Reversible and Spatiotemporal Electrofluorochromism of Eu3+ Metallogels Driven by Cooperative Chemical Reactions with Biomimetic Information “Memorizing-forgetting” Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1