Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-03-05 DOI:10.1038/s41377-025-01793-2
Qingbin Fan, Peicheng Lin, Le Tan, Chunyu Huang, Feng Yan, Yanqing Lu, Ting Xu
{"title":"Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces","authors":"Qingbin Fan, Peicheng Lin, Le Tan, Chunyu Huang, Feng Yan, Yanqing Lu, Ting Xu","doi":"10.1038/s41377-025-01793-2","DOIUrl":null,"url":null,"abstract":"<p>Transparent flow field visualization techniques play a critical role in engineering and scientific applications. They provide a clear and intuitive means to understand fluid dynamics and its complex phenomena, such as laminar flow, turbulence, and vortices. However, achieving fully two-dimensional quantitative visualization of transparent flow fields under non-invasive conditions remains a significant challenge. Here, we present an approach for achieving flow field visualization by harnessing the synergistic effects of a dielectric metasurface array endowed with photonic spin-decoupled capability. This approach enables the simultaneous acquisition of light-field images containing flow field information in two orthogonal dimensions, which allows for the real-time and quantitative derivation of multiple physical parameters. As a proof-of-concept, we experimentally demonstrate the applicability of the proposed visualization technique to various scenarios, including temperature field mapping, gas leak detection, visualization of various fluid physical phenomena, and 3D morphological reconstruction of transparent phase objects. This technique not only establishes an exceptional platform for advancing research in fluid physics, but also exhibits significant potential for broad applications in industrial design and vision.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01793-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent flow field visualization techniques play a critical role in engineering and scientific applications. They provide a clear and intuitive means to understand fluid dynamics and its complex phenomena, such as laminar flow, turbulence, and vortices. However, achieving fully two-dimensional quantitative visualization of transparent flow fields under non-invasive conditions remains a significant challenge. Here, we present an approach for achieving flow field visualization by harnessing the synergistic effects of a dielectric metasurface array endowed with photonic spin-decoupled capability. This approach enables the simultaneous acquisition of light-field images containing flow field information in two orthogonal dimensions, which allows for the real-time and quantitative derivation of multiple physical parameters. As a proof-of-concept, we experimentally demonstrate the applicability of the proposed visualization technique to various scenarios, including temperature field mapping, gas leak detection, visualization of various fluid physical phenomena, and 3D morphological reconstruction of transparent phase objects. This technique not only establishes an exceptional platform for advancing research in fluid physics, but also exhibits significant potential for broad applications in industrial design and vision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Controlling the wavefront aberration of a large-aperture and high-precision holographic diffraction grating Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces High-performance achromatic flat lens by multiplexing meta-atoms on a stepwise phase dispersion compensation layer Full polarization control of photons with evanescent wave coupling in the ultra subwavelength gap of photonic molecules Programmable electron-induced color router array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1