Negative-Valent Platinum Stabilized by Pt─Ni Electron Bridges on Oxygen-Deficient NiFe-LDH for Enhanced Electrocatalytic Hydrogen Evolution

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-03-04 DOI:10.1002/adma.202500595
Shijie Shen, Qingao Li, Huanhuan Zhang, Dian Yang, Junjie Gong, Lin Gu, Tong Gao, Wenwu Zhong
{"title":"Negative-Valent Platinum Stabilized by Pt─Ni Electron Bridges on Oxygen-Deficient NiFe-LDH for Enhanced Electrocatalytic Hydrogen Evolution","authors":"Shijie Shen, Qingao Li, Huanhuan Zhang, Dian Yang, Junjie Gong, Lin Gu, Tong Gao, Wenwu Zhong","doi":"10.1002/adma.202500595","DOIUrl":null,"url":null,"abstract":"The unique hydrogen adsorption characteristics of negatively charged platinum play a crucial role in enhancing the electrocatalytic hydrogen evolution reaction. However, atomically dispersed Pt atoms are typically anchored to the support through non-metallic atom bonds, resulting in a high oxidation state. Here, atomically dispersed Pt atoms are anchored in oxygen-deficient NiFe-LDH. Electron transfer between Pt and NiFe-LDH occurs primarily through Pt─Ni bonds rather than the conventional Pt─O bonds. Oxygen vacancies in the NiFe-LDH promote additional electron transfer from Ni to Pt, thereby reducing the valence state of Pt and enhancing hydrogen adsorption. Meanwhile, the elevated valence state of Ni increases the catalyst's hydrophilicity and reduces the energy barrier for hydrolysis dissociation. This catalyst demonstrates remarkably low overpotentials of 4 and 9 mV at 10 mA cm<sup>−2</sup> in 1 <span>m</span> KOH and 1 <span>m</span> KPi, respectively. Additionally, its mass activity is 51.5 and 23.7 times higher that of Pt/C, respectively. This study presents a novel strategy for enhancing electrocatalytic performance through the rational design of coordination environments and electronic structures in supported metal catalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"12 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique hydrogen adsorption characteristics of negatively charged platinum play a crucial role in enhancing the electrocatalytic hydrogen evolution reaction. However, atomically dispersed Pt atoms are typically anchored to the support through non-metallic atom bonds, resulting in a high oxidation state. Here, atomically dispersed Pt atoms are anchored in oxygen-deficient NiFe-LDH. Electron transfer between Pt and NiFe-LDH occurs primarily through Pt─Ni bonds rather than the conventional Pt─O bonds. Oxygen vacancies in the NiFe-LDH promote additional electron transfer from Ni to Pt, thereby reducing the valence state of Pt and enhancing hydrogen adsorption. Meanwhile, the elevated valence state of Ni increases the catalyst's hydrophilicity and reduces the energy barrier for hydrolysis dissociation. This catalyst demonstrates remarkably low overpotentials of 4 and 9 mV at 10 mA cm−2 in 1 m KOH and 1 m KPi, respectively. Additionally, its mass activity is 51.5 and 23.7 times higher that of Pt/C, respectively. This study presents a novel strategy for enhancing electrocatalytic performance through the rational design of coordination environments and electronic structures in supported metal catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Spontaneous Charging from Sliding Water Drops Determines the Interfacial Deposition of Charged Solutes Upconversion Nanoparticle-Covalent Organic Framework Core–shell Particles as Therapeutic Microrobots Trackable With Optoacoustic Imaging In Situ Grown RuNi Alloy on ZrNiNx as a Bifunctional Electrocatalyst Boosts Industrial Water Splitting 3D Printed Materials with Nanovoxelated Elastic Moduli Bias-Switchable Photomultiplication and Photovoltaic Dual-Mode Near-Infrared Organic Photodetector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1