Zhuofeng Shi, Wei Guo, Saiyu Bu, Lingmiao Ma, Zhaoning Hu, Yaqi Zhu, Haotian Wu, Xiaohui Chen, Xiaodong Zhang, Kostya S. Novoselov, Boyang Mao, Ning Kang, Li Lin
{"title":"Rapid growth of inch-sized lanthanide oxychloride single crystals","authors":"Zhuofeng Shi, Wei Guo, Saiyu Bu, Lingmiao Ma, Zhaoning Hu, Yaqi Zhu, Haotian Wu, Xiaohui Chen, Xiaodong Zhang, Kostya S. Novoselov, Boyang Mao, Ning Kang, Li Lin","doi":"10.1038/s41563-025-02142-9","DOIUrl":null,"url":null,"abstract":"<p>The layered lanthanide oxychloride (LnOCl) family, featuring a low equivalent oxide thickness, high breakdown field and magnetic ordering properties, holds great promise for next-generation van der Waals devices. However, the exploitation of LnOCl materials has been hindered by a lack of reliable methods for growing their single-crystalline phases. Here we achieved the growth of inch-sized bulk LnOCl single crystals and single-crystalline thin films with thickness down to the monolayer in a few hours. The monolayer LnOCl exhibits ultralow equivalent oxide thicknesses, for instance, LaOCl and SmOCl have values of 0.25 and 0.34, respectively. Furthermore, using LnOCl as a dielectric in graphene devices, we demonstrate wafer-scale enhancement of carrier mobility and a well-developed quantum Hall effect. The induced strong magnetic proximity effect by SmOCl and DyOCl enables efficient interfacial charge transfer with magnetic exchange coupling This work provides a general strategy for synthesizing large-sized single-crystalline layered materials, enriching the library of ultralow-equivalent-oxide-thickness dielectric materials, and two-dimensional magnetic materials with induced strong magnetic proximity effect.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"18 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02142-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The layered lanthanide oxychloride (LnOCl) family, featuring a low equivalent oxide thickness, high breakdown field and magnetic ordering properties, holds great promise for next-generation van der Waals devices. However, the exploitation of LnOCl materials has been hindered by a lack of reliable methods for growing their single-crystalline phases. Here we achieved the growth of inch-sized bulk LnOCl single crystals and single-crystalline thin films with thickness down to the monolayer in a few hours. The monolayer LnOCl exhibits ultralow equivalent oxide thicknesses, for instance, LaOCl and SmOCl have values of 0.25 and 0.34, respectively. Furthermore, using LnOCl as a dielectric in graphene devices, we demonstrate wafer-scale enhancement of carrier mobility and a well-developed quantum Hall effect. The induced strong magnetic proximity effect by SmOCl and DyOCl enables efficient interfacial charge transfer with magnetic exchange coupling This work provides a general strategy for synthesizing large-sized single-crystalline layered materials, enriching the library of ultralow-equivalent-oxide-thickness dielectric materials, and two-dimensional magnetic materials with induced strong magnetic proximity effect.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.