Arctic willow (Salix polaris) exudation as a driver of microbial activity and soil formation in the high arctic tundra

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2025-03-05 DOI:10.1007/s10533-025-01222-x
Václav Tejnecký, Petra Luláková, Hana Šantrůčková, Petra Křížová, Jiří Lehejček, Tomáš Hájek, Filip Mercl, Jiří Bárta, Karel Němeček, Ondřej Drábek
{"title":"Arctic willow (Salix polaris) exudation as a driver of microbial activity and soil formation in the high arctic tundra","authors":"Václav Tejnecký,&nbsp;Petra Luláková,&nbsp;Hana Šantrůčková,&nbsp;Petra Křížová,&nbsp;Jiří Lehejček,&nbsp;Tomáš Hájek,&nbsp;Filip Mercl,&nbsp;Jiří Bárta,&nbsp;Karel Němeček,&nbsp;Ondřej Drábek","doi":"10.1007/s10533-025-01222-x","DOIUrl":null,"url":null,"abstract":"<div><p>Colonization by pioneer plants, among which the arctic willow (<i>Salix polaris</i>) is one of the most important, accelerates soil development after deglaciation. This is achieved through the increased input of organic matter from plant biomass and the exudation of low molecular mass organic compounds (LMMOA), predominantly organic acids, which facilitate mineral dissolution and nutrient release. These exudates support microbial activity and contribute to the formation of soil organic matter. While there is quite a lot of data on the exudation and acceleration of microbial activity in the rhizosphere of various plants, similar data concerning arctic plants, including willow, are scarce. Furthermore, there is a lack of data on the effect of C, N, P root stoichiometry on nutrient content in exudates and the rhizosphere microbiome during soil succession after deglaciation. In this study, we analysed various habitats of high-arctic tundra in Petuniabukta (Billefjorden, Svalbard), representing different stages of vegetation development. Our objectives were (i) to assess soil and rhizosphere carbon and nutrient content and availability, as well as microbial biomass CNP; (ii) to evaluate the rhizosphere effect on nutrient availability and the microbiome of arctic willow; and (iii) to measure root and exudation CNP and quality, primarily LMMOA, in arctic willow from the studied habitats. The exudates released to deionised water were analysed for LMMOA and inorganic anions (ion chromatography) as well as the total content of C and N. The plants roots were analysed for CNP content. Soil chemical properties (e.g. pH, organic C, total and exchangeable content of elements, water extractable PO<sub>4</sub><sup>3−</sup>) and microbial parameters (microbial biomass and quantity of bacteria and fungi) were assessed in both rhizosphere and bulk soils, with the rhizosphere effect calculated accordingly. The most abundant LMMOA species in willow exudates were lactate, acetate, formate, malate and citrate, followed by pyruvate, quinate and oxalate, collectively representing approximately 2% of the total exuded C. The rhizosphere effect of willows on nutrient availability and microbial parameters was the most significant at sites with early soil development and diminished with increasing vegetation cover. A link was observed between nitrogen and phosphorus exudation and plant root stoichiometry. These trends underscored the essential role of root exudation in overcoming microbial nutrient limitations during early soil development, particularly in sites with lower nitrogen availability by reducing the soil C/N ratio.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01222-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01222-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Colonization by pioneer plants, among which the arctic willow (Salix polaris) is one of the most important, accelerates soil development after deglaciation. This is achieved through the increased input of organic matter from plant biomass and the exudation of low molecular mass organic compounds (LMMOA), predominantly organic acids, which facilitate mineral dissolution and nutrient release. These exudates support microbial activity and contribute to the formation of soil organic matter. While there is quite a lot of data on the exudation and acceleration of microbial activity in the rhizosphere of various plants, similar data concerning arctic plants, including willow, are scarce. Furthermore, there is a lack of data on the effect of C, N, P root stoichiometry on nutrient content in exudates and the rhizosphere microbiome during soil succession after deglaciation. In this study, we analysed various habitats of high-arctic tundra in Petuniabukta (Billefjorden, Svalbard), representing different stages of vegetation development. Our objectives were (i) to assess soil and rhizosphere carbon and nutrient content and availability, as well as microbial biomass CNP; (ii) to evaluate the rhizosphere effect on nutrient availability and the microbiome of arctic willow; and (iii) to measure root and exudation CNP and quality, primarily LMMOA, in arctic willow from the studied habitats. The exudates released to deionised water were analysed for LMMOA and inorganic anions (ion chromatography) as well as the total content of C and N. The plants roots were analysed for CNP content. Soil chemical properties (e.g. pH, organic C, total and exchangeable content of elements, water extractable PO43−) and microbial parameters (microbial biomass and quantity of bacteria and fungi) were assessed in both rhizosphere and bulk soils, with the rhizosphere effect calculated accordingly. The most abundant LMMOA species in willow exudates were lactate, acetate, formate, malate and citrate, followed by pyruvate, quinate and oxalate, collectively representing approximately 2% of the total exuded C. The rhizosphere effect of willows on nutrient availability and microbial parameters was the most significant at sites with early soil development and diminished with increasing vegetation cover. A link was observed between nitrogen and phosphorus exudation and plant root stoichiometry. These trends underscored the essential role of root exudation in overcoming microbial nutrient limitations during early soil development, particularly in sites with lower nitrogen availability by reducing the soil C/N ratio.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Arctic willow (Salix polaris) exudation as a driver of microbial activity and soil formation in the high arctic tundra Soil carbon responses to prescribed burning, nitrogen addition, and their interactions in a Mediterranean shrubland Comparison of greenhouse gas emission estimates from six hydropower reservoirs using modeling versus field surveys The Freundlich isotherm equation best represents phosphate sorption across soil orders and land use types in tropical soils of Puerto Rico Detailed controls on biomineralization in an adult echinoderm: skeletal carbonate mineralogy of the New Zealand sand dollar (Fellaster zelandiae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1