Renewable energy and demand uncertainty-aware stochastic allocation and management of soft open points for simultaneous reduction of harmonic distortion, voltage deviations and losses
{"title":"Renewable energy and demand uncertainty-aware stochastic allocation and management of soft open points for simultaneous reduction of harmonic distortion, voltage deviations and losses","authors":"Hasan Ebrahimi , Farhad Shahnia , Nazila Nikdel , Sadjad Galvani","doi":"10.1016/j.compeleceng.2025.110208","DOIUrl":null,"url":null,"abstract":"<div><div>The uncertainty of renewable energies and demand complicates the management of harmonically polluted distribution networks. Power electronics-based soft open points (SOPs) are a promising solution as they can precisely control the power flow in the network. This paper proposes a novel stochastic SOP allocation and management approach by properly optimizing its operational set points. The proposal's key emphasis is simultaneously alleviating harmonic distortion, voltage deviation, and power loss by the optimal allocation and management of the SOPs. This is realized through optimal control of active and reactive power flow and the cautious injection of harmonic currents through the allocated and managed SOPs. The proposal employs the K-means data clustering technique to discern appropriate parameters’ uncertainties, while the Cholesky decomposition method and the Nataf transformation technique are combined to handle the existing correlations amongst various uncertainties proficiently. The proposal uses the non-dominated sorting genetic algorithm II (NSGA-II) to solve the formulated optimization problem by extracting the Pareto front solutions set, while the final solution is selected using the technique of ordering the preference by similarity to the ideal solution (TOPSIS). The proposal's performance is evaluated and verified through numerical studies on modified IEEE 33 and 118 bus networks.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110208"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579062500151X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The uncertainty of renewable energies and demand complicates the management of harmonically polluted distribution networks. Power electronics-based soft open points (SOPs) are a promising solution as they can precisely control the power flow in the network. This paper proposes a novel stochastic SOP allocation and management approach by properly optimizing its operational set points. The proposal's key emphasis is simultaneously alleviating harmonic distortion, voltage deviation, and power loss by the optimal allocation and management of the SOPs. This is realized through optimal control of active and reactive power flow and the cautious injection of harmonic currents through the allocated and managed SOPs. The proposal employs the K-means data clustering technique to discern appropriate parameters’ uncertainties, while the Cholesky decomposition method and the Nataf transformation technique are combined to handle the existing correlations amongst various uncertainties proficiently. The proposal uses the non-dominated sorting genetic algorithm II (NSGA-II) to solve the formulated optimization problem by extracting the Pareto front solutions set, while the final solution is selected using the technique of ordering the preference by similarity to the ideal solution (TOPSIS). The proposal's performance is evaluated and verified through numerical studies on modified IEEE 33 and 118 bus networks.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.