Development of a Bunching Ionizer for TOF Mass Spectrometers with Reduced Resources

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2025-02-10 DOI:10.1021/jasms.4c0043610.1021/jasms.4c00436
Oya Kawashima*, Satoshi Kasahara, Yoshifumi Saito, Masafumi Hirahara, Kazushi Asamura and Shoichiro Yokota, 
{"title":"Development of a Bunching Ionizer for TOF Mass Spectrometers with Reduced Resources","authors":"Oya Kawashima*,&nbsp;Satoshi Kasahara,&nbsp;Yoshifumi Saito,&nbsp;Masafumi Hirahara,&nbsp;Kazushi Asamura and Shoichiro Yokota,&nbsp;","doi":"10.1021/jasms.4c0043610.1021/jasms.4c00436","DOIUrl":null,"url":null,"abstract":"<p >In some types of mass spectrometers, such as time-of-flight mass spectrometers (TOF-MSs), it is necessary to control pulsed beams of ions. This can be easily accomplished by applying a pulsed voltage to the pusher electrode while the ionizer is continuously flowing ions. This method is preferred for its simplicity, although the ion utilization efficiency is not optimized. Here we employed another pulse-control method with a higher ion utilization rate, which is to bunch ions and kick them out instead of letting them stream. The benefit of this method is that higher sensitivity can be achieved; since the start of new ions cannot be allowed during TOF separation, it is highly advantageous to bunch ions that would otherwise be unusable. In this study, we used analytical and numerical methods to design a new bunching ionizer with reduced resources, adopting the principle of the electrostatic ion beam trap. The test model experimentally demonstrated the bunching performance with respect to the sample gas density and ion bunching time using gas samples and electron impact ionization. We also conducted an experiment connecting the newly developed bunching ionizer with a miniature TOF-MS. As a result, the sensitivity was improved by an order of magnitude compared to the case using a nonbunching ionizer. Since the device is capable of bunching ions with low voltage and power consumption, it will be possible to find applications in portable mass spectrometers with reduced resources.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 3","pages":"553–564 553–564"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00436","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In some types of mass spectrometers, such as time-of-flight mass spectrometers (TOF-MSs), it is necessary to control pulsed beams of ions. This can be easily accomplished by applying a pulsed voltage to the pusher electrode while the ionizer is continuously flowing ions. This method is preferred for its simplicity, although the ion utilization efficiency is not optimized. Here we employed another pulse-control method with a higher ion utilization rate, which is to bunch ions and kick them out instead of letting them stream. The benefit of this method is that higher sensitivity can be achieved; since the start of new ions cannot be allowed during TOF separation, it is highly advantageous to bunch ions that would otherwise be unusable. In this study, we used analytical and numerical methods to design a new bunching ionizer with reduced resources, adopting the principle of the electrostatic ion beam trap. The test model experimentally demonstrated the bunching performance with respect to the sample gas density and ion bunching time using gas samples and electron impact ionization. We also conducted an experiment connecting the newly developed bunching ionizer with a miniature TOF-MS. As a result, the sensitivity was improved by an order of magnitude compared to the case using a nonbunching ionizer. Since the device is capable of bunching ions with low voltage and power consumption, it will be possible to find applications in portable mass spectrometers with reduced resources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Kinetic Method Coupled with Thermal-Assisted Paper Spray Ionization Mass Spectrometry for Direct Determination of Enantiomeric Excess of Multiple d/l-Amino Acids in Functional Foods. Spatial Distribution of Brain PET Tracers by MALDI Imaging. Characterizing Monoclonal Antibody Aggregation Using Charge Detection Mass Spectrometry and Industry Standard Methods. Ligand Conformational and Metal Coordination Isomers in Complexes of Metal Ions and Cyclic Depsipeptides. TargetSeeker-MS: A Bayesian Inference Approach for Drug-Target Discovery Using Protein Fractionation Coupled to Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1