Rapid and Non-Targeted Qualitative and Quantitative Detection of miRNA in Complex Biological Samples Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with a 3-Aminoquinoline and 2′,4′,6′-Trihydroxyacetophenone Ionic Liquid Matrix

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2025-01-30 DOI:10.1021/jasms.4c0036910.1021/jasms.4c00369
Shiwen Zhou, Jiancong Liao, Kailin Jiang, Huiwen Wang, Yaqin Liu, Hangming Xiong, Ping Wang, Yuanjiang Pan* and Hongru Feng*, 
{"title":"Rapid and Non-Targeted Qualitative and Quantitative Detection of miRNA in Complex Biological Samples Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with a 3-Aminoquinoline and 2′,4′,6′-Trihydroxyacetophenone Ionic Liquid Matrix","authors":"Shiwen Zhou,&nbsp;Jiancong Liao,&nbsp;Kailin Jiang,&nbsp;Huiwen Wang,&nbsp;Yaqin Liu,&nbsp;Hangming Xiong,&nbsp;Ping Wang,&nbsp;Yuanjiang Pan* and Hongru Feng*,&nbsp;","doi":"10.1021/jasms.4c0036910.1021/jasms.4c00369","DOIUrl":null,"url":null,"abstract":"<p >A novel ionic liquid MALDI matrix, 3-aminoquinoline/2′,4′,6′-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability. The 3-AQ/THAP matrix provides broader mass coverage and can effectively detect oligonucleotides ranging from 3-mer to 50-mer while delivering single-base resolution and sequence information. Additionally, it significantly reduces the “sweet spot” effect with an RSD of less than 7% over 36 single-spot analyses. For oligonucleotides ranging from 16-mer to 26-mer, the linear range extends from 0.4 μM to 40 μM per spot, with an R<sup>2</sup> greater than 0.988. Finally, miRNA in human plasma, fetal equine serum, and fetal bovine serum was successfully identified both qualitatively and quantitatively using the 3-AQ/THAP matrix. This matrix demonstrated excellent practicability for the detection of multiple miRNAs in complex biological samples.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 3","pages":"495–503 495–503"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00369","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel ionic liquid MALDI matrix, 3-aminoquinoline/2′,4′,6′-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability. The 3-AQ/THAP matrix provides broader mass coverage and can effectively detect oligonucleotides ranging from 3-mer to 50-mer while delivering single-base resolution and sequence information. Additionally, it significantly reduces the “sweet spot” effect with an RSD of less than 7% over 36 single-spot analyses. For oligonucleotides ranging from 16-mer to 26-mer, the linear range extends from 0.4 μM to 40 μM per spot, with an R2 greater than 0.988. Finally, miRNA in human plasma, fetal equine serum, and fetal bovine serum was successfully identified both qualitatively and quantitatively using the 3-AQ/THAP matrix. This matrix demonstrated excellent practicability for the detection of multiple miRNAs in complex biological samples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Kinetic Method Coupled with Thermal-Assisted Paper Spray Ionization Mass Spectrometry for Direct Determination of Enantiomeric Excess of Multiple d/l-Amino Acids in Functional Foods. Spatial Distribution of Brain PET Tracers by MALDI Imaging. Characterizing Monoclonal Antibody Aggregation Using Charge Detection Mass Spectrometry and Industry Standard Methods. Ligand Conformational and Metal Coordination Isomers in Complexes of Metal Ions and Cyclic Depsipeptides. TargetSeeker-MS: A Bayesian Inference Approach for Drug-Target Discovery Using Protein Fractionation Coupled to Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1