Robust SPE-UHPLC-MS/MS method for determination of multiple categories of antibiotics with broad polarity range in surface water

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2025-03-01 DOI:10.1016/j.microc.2025.113198
Xinyuan Pei , Nan Zhang , Yuting Chen , Shiyu Miao , Huiyang Fu , Qingqing Zhu , Zhengbo Dai , Yi Chi , Ligang Hu , Rong Jin , Chunyang Liao
{"title":"Robust SPE-UHPLC-MS/MS method for determination of multiple categories of antibiotics with broad polarity range in surface water","authors":"Xinyuan Pei ,&nbsp;Nan Zhang ,&nbsp;Yuting Chen ,&nbsp;Shiyu Miao ,&nbsp;Huiyang Fu ,&nbsp;Qingqing Zhu ,&nbsp;Zhengbo Dai ,&nbsp;Yi Chi ,&nbsp;Ligang Hu ,&nbsp;Rong Jin ,&nbsp;Chunyang Liao","doi":"10.1016/j.microc.2025.113198","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotics, as a typical class of emerging contaminants in the environment, are frequently detected at trace concentrations in various water samples. The chemical properties of antibiotics exhibit significant diversity, encompassing variations in molecular structure, amphoteric behaviour, and polarity. These differences present substantial challenges in developing universal detection methods for comprehensive monitoring of antibiotic contaminants. Therefore, it is imperative to develop more targeted, efficient, and sensitive analytical techniques. In this study, we develop a solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS) method. This method enables the simultaneous determination of 69 antibiotics divided into seven categories (tetracyclines, quinolones, sulfonamides, β-lactams, macrolides, lincosamides, and chloramphenicols) in surface water. The method achieved limits of detection (LOQs) ranging from 0.002 to 1.71 ng/L. The standard curves of the target compounds exhibited excellent linearity, with correlation coefficients (r<sup>2</sup>) &gt; 0.995, and most spiked recoveries fell within the range of 40.4–149 %, with relative standard deviations (RSDs) below 15 %. Using this method, 19 surface water samples from Qiantang River Basin, Zhejiang Province, China were analyzed, with 29 out of 69 analytes being detected (the total concentrations ranging from 5.69 to 131 ng/L). This method provides a reliable and robust analytical approach for the comprehensive monitoring of antibiotic contaminants in environmental water, offering critical insights for pollution control and water quality management efforts.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"212 ","pages":"Article 113198"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X25005521","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotics, as a typical class of emerging contaminants in the environment, are frequently detected at trace concentrations in various water samples. The chemical properties of antibiotics exhibit significant diversity, encompassing variations in molecular structure, amphoteric behaviour, and polarity. These differences present substantial challenges in developing universal detection methods for comprehensive monitoring of antibiotic contaminants. Therefore, it is imperative to develop more targeted, efficient, and sensitive analytical techniques. In this study, we develop a solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS) method. This method enables the simultaneous determination of 69 antibiotics divided into seven categories (tetracyclines, quinolones, sulfonamides, β-lactams, macrolides, lincosamides, and chloramphenicols) in surface water. The method achieved limits of detection (LOQs) ranging from 0.002 to 1.71 ng/L. The standard curves of the target compounds exhibited excellent linearity, with correlation coefficients (r2) > 0.995, and most spiked recoveries fell within the range of 40.4–149 %, with relative standard deviations (RSDs) below 15 %. Using this method, 19 surface water samples from Qiantang River Basin, Zhejiang Province, China were analyzed, with 29 out of 69 analytes being detected (the total concentrations ranging from 5.69 to 131 ng/L). This method provides a reliable and robust analytical approach for the comprehensive monitoring of antibiotic contaminants in environmental water, offering critical insights for pollution control and water quality management efforts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效液相色谱-质谱联用方法测定地表水中多种类、宽极性范围的抗生素
抗生素作为环境中一类典型的新兴污染物,经常在各种水样中检测到微量浓度。抗生素的化学性质表现出显著的多样性,包括分子结构、两性行为和极性的变化。这些差异对开发全面监测抗生素污染物的通用检测方法提出了重大挑战。因此,开发更有针对性、更高效、更灵敏的分析技术势在必行。本研究建立了固相萃取-超高效液相色谱-串联质谱联用(SPE-UHPLC-MS/MS)方法。该方法可同时测定地表水中7大类69种抗生素(四环素类、喹诺酮类、磺胺类、β-内酰胺类、大环内酯类、lincosamides、氯霉素类)的含量。该方法的检出限为0.002 ~ 1.71 ng/L。目标化合物的标准曲线呈良好的线性关系,相关系数为(r2) >;0.995,加标回收率在40.4% ~ 149%之间,相对标准偏差(rsd)小于15%。采用该方法对浙江省钱塘江流域19份地表水样品进行了分析,69种分析物中检出29种,总浓度范围为5.69 ~ 131 ng/L。该方法为环境水中抗生素污染物的全面监测提供了可靠和稳健的分析方法,为污染控制和水质管理工作提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Na2EDTA
麦克林
Tetracycline
麦克林
Piperacillin
麦克林
Penicillin V
麦克林
Oxytetracycline
麦克林
Oxacillin
麦克林
Nafcilin
麦克林
Doxycycline
麦克林
Chlortetracycline
麦克林
Ampicillin
麦克林
Na2EDTA
阿拉丁
ammonium acetate
阿拉丁
formic acid
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Development of a novel quantitative method for the analysis of hydroxycitric acid and its lactone in different tissues of Garcinia species using LC-MS/MS Ultrasensitive electrochemical detection of Tyrosinase using au modified laser-induced graphene nanoelectrodes Development of electrochemical biosensor utilizing Fe3O4@Au and DNAzyme-mediated polymerase strand displacement amplification for the detection of nickel ions Transition metal-incorporated fluorine-doped mesoporous silica nanoparticles for non-enzymatic electrochemical detection of ascorbic acid Screening of aptamers to olaquindox metabolite and establishment of a complementary Strand competition-based method by ELASA technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1