Cereals as sources of lysine in the reformulation of meat products. Evaluation using a biosensor

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Biosensors and Bioelectronics: X Pub Date : 2025-03-03 DOI:10.1016/j.biosx.2025.100592
Erika Alvarez Cañarte , Guilber Vergara Velez , Frank Guillermo Intriago Flor , Efrain Pérez Vega , Miguel Andrès Falconi Vèlez , Delia Noriega Verdugo , Génesis Pamela García García , Livis Sharith Díaz Alarcón , Andrés Miguel Anchundia Loor , Carlos Jadán-Piedra , Felipe Jadán Piedra
{"title":"Cereals as sources of lysine in the reformulation of meat products. Evaluation using a biosensor","authors":"Erika Alvarez Cañarte ,&nbsp;Guilber Vergara Velez ,&nbsp;Frank Guillermo Intriago Flor ,&nbsp;Efrain Pérez Vega ,&nbsp;Miguel Andrès Falconi Vèlez ,&nbsp;Delia Noriega Verdugo ,&nbsp;Génesis Pamela García García ,&nbsp;Livis Sharith Díaz Alarcón ,&nbsp;Andrés Miguel Anchundia Loor ,&nbsp;Carlos Jadán-Piedra ,&nbsp;Felipe Jadán Piedra","doi":"10.1016/j.biosx.2025.100592","DOIUrl":null,"url":null,"abstract":"<div><div>The energy and protein requirements of the population must be met, and the use of new analytical methods for rapid, low-cost detection of essential elements like lysine in reformulated foods is crucial. In this context, conditions were evaluated to develop a biosensor with lysine alpha oxidase (LOx), which showed high affinity for lysine with a K<sub>M</sub> of 0.32 mM. Different concentrations of cereals and legumes (70-30; 55-45; 85-15; quinoa-Lablab Purpureus; pole beans-Lablab Purpureus; and rye-Lablab Purpureus) were incorporated into meat sausages to enrich lysine, achieving a significant increase in lysine concentration (up to 75%) when 15% quinoa was substituted. The potentiometric signal, related to oxygen consumption during lysine oxidation, was detected at 15 s using a voltage of −600 mV. The biosensor, coupled with the immobilized enzyme, allowed the use of low volumes. A positive relationship was found between oxygen consumption (mg O<sub>2</sub>/L∗s-1) and lysine concentration in the range of 0.01–0.2 mM, with an R<sup>2</sup> of 0.9964. The immobilized enzyme-based sensor demonstrated good sensitivity (0.01 mM) and the membrane could be reused up to 18 times, maintaining 92% of its initial activity after 70 days. The biosensor method showed minimal residue formation and had a strong correlation with high-performance liquid chromatography (HPLC) results, validating its accuracy.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100592"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The energy and protein requirements of the population must be met, and the use of new analytical methods for rapid, low-cost detection of essential elements like lysine in reformulated foods is crucial. In this context, conditions were evaluated to develop a biosensor with lysine alpha oxidase (LOx), which showed high affinity for lysine with a KM of 0.32 mM. Different concentrations of cereals and legumes (70-30; 55-45; 85-15; quinoa-Lablab Purpureus; pole beans-Lablab Purpureus; and rye-Lablab Purpureus) were incorporated into meat sausages to enrich lysine, achieving a significant increase in lysine concentration (up to 75%) when 15% quinoa was substituted. The potentiometric signal, related to oxygen consumption during lysine oxidation, was detected at 15 s using a voltage of −600 mV. The biosensor, coupled with the immobilized enzyme, allowed the use of low volumes. A positive relationship was found between oxygen consumption (mg O2/L∗s-1) and lysine concentration in the range of 0.01–0.2 mM, with an R2 of 0.9964. The immobilized enzyme-based sensor demonstrated good sensitivity (0.01 mM) and the membrane could be reused up to 18 times, maintaining 92% of its initial activity after 70 days. The biosensor method showed minimal residue formation and had a strong correlation with high-performance liquid chromatography (HPLC) results, validating its accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
期刊最新文献
Cereals as sources of lysine in the reformulation of meat products. Evaluation using a biosensor Nanostructured immunosensing system for label-free impedimetric detection of multiple breast cancer biomarkers (CEA and HER2) using CoMoO4@PANI-PPy Nanocomposite Preparation and application of enzyme-based hydrogels Characterization of plant pathogenic bacteria at subspecies level using a dielectrophoresis device combined with Raman spectroscopy A deeper evaluation of cytokeratin fragment 21-1 as a lung cancer tumor marker and comparison of different assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1