Yandara A. Martins, Camila A.E.F. Cardinali, Andréa S. Torrão
{"title":"Age-related differences in long-term memory performance and astrocyte morphology in rat hippocampus","authors":"Yandara A. Martins, Camila A.E.F. Cardinali, Andréa S. Torrão","doi":"10.1016/j.neurobiolaging.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"150 ","pages":"Pages 19-43"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025000375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.