{"title":"A GCM study of synoptic-scale vortices in the lower cloud layer on Venus","authors":"Masataka Imai , Masahiro Takagi , Hiroki Ando , Hideo Sagawa","doi":"10.1016/j.icarus.2025.116523","DOIUrl":null,"url":null,"abstract":"<div><div>A synoptic-scale vortex was observed as a spiral cloud feature in mid-latitudes of the nightside northern hemisphere of the Venusian atmosphere by the 2-μm camera (IR2) onboard the Venus Climate Orbiter, Akatsuki. Using a general circulation model (GCM), we reproduced vortices consistent with the observation. The result shows that the cyclonic vortex with a longitudinal scale of ∼5000 km develops in mid-latitudes at ∼60 km altitude within the middle cloud layer, accompanied by upward (downward) winds on the downstream (upstream) side of the zonal-mean zonal wind. The spiral cloud feature could be formed by the meridional and vertical winds associated with the vortex. The linear stability analysis suggests that the synoptic-scale vortices, with an <em>e</em>-folding time of 4.3 days, could be generated by barotropic instability due to the meridional shear of the mid-latitude jet, which is consistent with the present GCM result. The vortices and mid-latitude jets develop and decay alternately in both hemispheres because the growing and decaying vortices in the southern and northern (northern and southern) hemispheres induce the northward (southward) angular momentum transport across the equator and enhance the mid-latitude jet in the northern (southern) hemisphere, which generates a new vortex by barotropic instability in the northern (southern) hemisphere.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"433 ","pages":"Article 116523"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525000703","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A synoptic-scale vortex was observed as a spiral cloud feature in mid-latitudes of the nightside northern hemisphere of the Venusian atmosphere by the 2-μm camera (IR2) onboard the Venus Climate Orbiter, Akatsuki. Using a general circulation model (GCM), we reproduced vortices consistent with the observation. The result shows that the cyclonic vortex with a longitudinal scale of ∼5000 km develops in mid-latitudes at ∼60 km altitude within the middle cloud layer, accompanied by upward (downward) winds on the downstream (upstream) side of the zonal-mean zonal wind. The spiral cloud feature could be formed by the meridional and vertical winds associated with the vortex. The linear stability analysis suggests that the synoptic-scale vortices, with an e-folding time of 4.3 days, could be generated by barotropic instability due to the meridional shear of the mid-latitude jet, which is consistent with the present GCM result. The vortices and mid-latitude jets develop and decay alternately in both hemispheres because the growing and decaying vortices in the southern and northern (northern and southern) hemispheres induce the northward (southward) angular momentum transport across the equator and enhance the mid-latitude jet in the northern (southern) hemisphere, which generates a new vortex by barotropic instability in the northern (southern) hemisphere.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.