Jingxin Wang, Hongming Liu, Hai Xiong, Jianzhong Xiao
{"title":"Mixed-potential NH3 sensor with Fe2(MoO4)3 as the sensing electrode: Performance and mechanistic insights","authors":"Jingxin Wang, Hongming Liu, Hai Xiong, Jianzhong Xiao","doi":"10.1016/j.ssi.2025.116814","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia (NH<sub>3</sub>) is recognized as an important exhaled gas in patients with renal and hepatic diseases, with its concentration closely correlated to disease progression. Thus, detecting NH<sub>3</sub> in exhaled breath is crucial for self-diagnosis, disease monitoring, and large-scale screening of specific populations. In this study, we synthesized the sensing material iron molybdate (Fe<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>) and systematically investigated its performance in NH<sub>3</sub> detection. The results indicated that the sensor can realize the detection of 0.38 ppm NH<sub>3</sub>, with the optimal sintering temperature identified as 550 °C and the optimal operating temperature as 475 °C. The response of the sensor to 5 ppm NH<sub>3</sub> is −24.3 ± 0.7 mV with response/recovery time of (55 ± 4)/ (86 ± 5) s. The X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM) were applied to analysis the phase composition and morphology. The sensing mechanism was also discussed basing on the results of temperature-programmed desorption (TPD) and electrochemical impedance spectroscopy (EIS). Furthermore, the sensor exhibited reliable and stable performance across different test cycles, demonstrating its short-term and long-term stability.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"422 ","pages":"Article 116814"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000335","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia (NH3) is recognized as an important exhaled gas in patients with renal and hepatic diseases, with its concentration closely correlated to disease progression. Thus, detecting NH3 in exhaled breath is crucial for self-diagnosis, disease monitoring, and large-scale screening of specific populations. In this study, we synthesized the sensing material iron molybdate (Fe2(MoO4)3) and systematically investigated its performance in NH3 detection. The results indicated that the sensor can realize the detection of 0.38 ppm NH3, with the optimal sintering temperature identified as 550 °C and the optimal operating temperature as 475 °C. The response of the sensor to 5 ppm NH3 is −24.3 ± 0.7 mV with response/recovery time of (55 ± 4)/ (86 ± 5) s. The X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM) were applied to analysis the phase composition and morphology. The sensing mechanism was also discussed basing on the results of temperature-programmed desorption (TPD) and electrochemical impedance spectroscopy (EIS). Furthermore, the sensor exhibited reliable and stable performance across different test cycles, demonstrating its short-term and long-term stability.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.