Won-Jong Choi , Wangje Lee , Deuk-Won Kim , Youngsub An , Hong-Jin Joo , Joo Young Hong , Min-Hwi Kim
{"title":"Experimental investigation of the energy performance of a photovoltaic-thermal assisted ground source heat pump system for net plus energy houses","authors":"Won-Jong Choi , Wangje Lee , Deuk-Won Kim , Youngsub An , Hong-Jin Joo , Joo Young Hong , Min-Hwi Kim","doi":"10.1016/j.csite.2025.105974","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the experimental analysis of the energy saving potential of integrating a photovoltaic-thermal (PVT) assisted ground source heat pump system under heating season operation. The demonstration building is an energy plus solar house located in Daejeon, South Korea. The coefficient of performance (COP) was measured during heating and domestic hot water operations to compare the energy supply efficiency of the proposed system and conventional systems. The results showed that the COP of the heat pump system was observed 4.5 for heating and 3.9 for domestic hot water. The ground source operation achieved COPs of 4.6 for heating and 4.4 for domestic hot water, while the PVT assisted ground source operation achieved COPs of 5.2 for heating and 4.4 for domestic hot water. The electrical and thermal utilization ratio of the PVT system were 7.5 %–21.2 % during the heating season. The seasonal performance factor and seasonal performance factor in grid of the proposed system showed 4.9 and 5.3, respectively. The experimental results confirmed that the PVT assisted ground source heat pump system is more energy-efficient with reducing carbon emissions compared to conventional systems.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 105974"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25002345","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the experimental analysis of the energy saving potential of integrating a photovoltaic-thermal (PVT) assisted ground source heat pump system under heating season operation. The demonstration building is an energy plus solar house located in Daejeon, South Korea. The coefficient of performance (COP) was measured during heating and domestic hot water operations to compare the energy supply efficiency of the proposed system and conventional systems. The results showed that the COP of the heat pump system was observed 4.5 for heating and 3.9 for domestic hot water. The ground source operation achieved COPs of 4.6 for heating and 4.4 for domestic hot water, while the PVT assisted ground source operation achieved COPs of 5.2 for heating and 4.4 for domestic hot water. The electrical and thermal utilization ratio of the PVT system were 7.5 %–21.2 % during the heating season. The seasonal performance factor and seasonal performance factor in grid of the proposed system showed 4.9 and 5.3, respectively. The experimental results confirmed that the PVT assisted ground source heat pump system is more energy-efficient with reducing carbon emissions compared to conventional systems.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.