The blockage of the electron transport chains caused by PFOA isomers induced metabolic damage of Arabidopsis leaves

IF 9 Q1 ENVIRONMENTAL SCIENCES Environmental Chemistry and Ecotoxicology Pub Date : 2025-01-01 DOI:10.1016/j.enceco.2025.02.006
Hao Wang , Jianxiong Mei , Zeying He , Bingjie Liu , Jishi Wang , Yue Geng , Yanwei Zhang
{"title":"The blockage of the electron transport chains caused by PFOA isomers induced metabolic damage of Arabidopsis leaves","authors":"Hao Wang ,&nbsp;Jianxiong Mei ,&nbsp;Zeying He ,&nbsp;Bingjie Liu ,&nbsp;Jishi Wang ,&nbsp;Yue Geng ,&nbsp;Yanwei Zhang","doi":"10.1016/j.enceco.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Different metabolic damage could be caused by PFOA isomers, although the harm mechanism has not been well studied. The effects of PFOA isomers on Arabidopsis metabolism were investigated using metabolomics, proteomics and molecular docking. Compared to Pn (linear PFOA), P3 (3 - methyl - perfluoroheptanoic acid, P3MHpA) induced a greater amount of oxidative damage and more dysregulation proteins. Both PFOA isomers caused significant metabolic disorders in oxidative stress and photosynthetic dysregulation, and they happened in similar molecular components including chloroplast and thylakoids. Proteins were more readily bound by ionic PFOA, and P3 exhibited higher ability than Pn. Isomers of the ionic PFOA bound to proteins in photosynthesis, particularly the ETC proteins, leading to a blockage of the electron transport chains in the chloroplast, which induced oxidative stress and photosynthetic toxicity. This study provides a novel and important mechanism for the photosynthetic toxicity of different PFOA isomers.</div></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"7 ","pages":"Pages 516-526"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182625000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Different metabolic damage could be caused by PFOA isomers, although the harm mechanism has not been well studied. The effects of PFOA isomers on Arabidopsis metabolism were investigated using metabolomics, proteomics and molecular docking. Compared to Pn (linear PFOA), P3 (3 - methyl - perfluoroheptanoic acid, P3MHpA) induced a greater amount of oxidative damage and more dysregulation proteins. Both PFOA isomers caused significant metabolic disorders in oxidative stress and photosynthetic dysregulation, and they happened in similar molecular components including chloroplast and thylakoids. Proteins were more readily bound by ionic PFOA, and P3 exhibited higher ability than Pn. Isomers of the ionic PFOA bound to proteins in photosynthesis, particularly the ETC proteins, leading to a blockage of the electron transport chains in the chloroplast, which induced oxidative stress and photosynthetic toxicity. This study provides a novel and important mechanism for the photosynthetic toxicity of different PFOA isomers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.40
自引率
0.00%
发文量
0
期刊最新文献
Sorption and diffusion studies of radiocesium in soil samples from Ibu Kota Nusantara region of Indonesia Transition metal-based MOFs for Fenton-like photocatalytic degradation of organic pollutants: Performance, stability, and biocompatibility Microplastics as persistent and vectors of other threats in the marine environment: Toxicological impacts, management and strategical roadmap to end plastic pollution Fluorinated liquid crystal monomer (FLCM) induces kidney dysfunction by disrupting PPARα-mediated fatty acid oxidation: In vivo, in vitro, and in silico assays Fate of trace elements and emerging environmental pollutants (benzotriazoles and benzothiazoles) from a glacier-fed river in the mixing zone of an Arctic fjord system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1