Bilinear-experts network with self-adaptive sampler for long-tailed visual recognition

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-03 DOI:10.1016/j.neucom.2025.129832
Qin Wang , Sam Kwong , Xizhao Wang
{"title":"Bilinear-experts network with self-adaptive sampler for long-tailed visual recognition","authors":"Qin Wang ,&nbsp;Sam Kwong ,&nbsp;Xizhao Wang","doi":"10.1016/j.neucom.2025.129832","DOIUrl":null,"url":null,"abstract":"<div><div>Long-tail distributed data hinders the practical application of state-of-the-art deep models in computer vision. Consequently, exclusive methodologies for handling the long-tailed problem are proposed, focusing on different hierarchies. For embedding hierarchy, existing works manually augment the diversity of tail-class features for specific datasets. However, prior knowledge about datasets is not always available for practical use, which brings unsatisfactory generalization ability in human fine-turned augmentation under such circumstances. To figure out this problem, we introduce a novel model named Bilinear-Experts Network (BENet) with Self-Adaptive Sampler (SAS). This model leverages model-driven perturbations to tail-class embeddings while preserving generalization capability on head classes through a designed bilinear experts system. The designed perturbations adaptively augment tail-class space and shift the class boundary away from the tail-class centers. Moreover, we find that SAS automatically assigns more significant perturbations to specific tail classes with relatively fewer training samples, which indicates SAS is capable of filtering tail classes with lower quality and enhancing them. Also, experiments conducted across various long-tailed benchmarks validate the comparable performance of the proposed BENet.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129832"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005041","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Long-tail distributed data hinders the practical application of state-of-the-art deep models in computer vision. Consequently, exclusive methodologies for handling the long-tailed problem are proposed, focusing on different hierarchies. For embedding hierarchy, existing works manually augment the diversity of tail-class features for specific datasets. However, prior knowledge about datasets is not always available for practical use, which brings unsatisfactory generalization ability in human fine-turned augmentation under such circumstances. To figure out this problem, we introduce a novel model named Bilinear-Experts Network (BENet) with Self-Adaptive Sampler (SAS). This model leverages model-driven perturbations to tail-class embeddings while preserving generalization capability on head classes through a designed bilinear experts system. The designed perturbations adaptively augment tail-class space and shift the class boundary away from the tail-class centers. Moreover, we find that SAS automatically assigns more significant perturbations to specific tail classes with relatively fewer training samples, which indicates SAS is capable of filtering tail classes with lower quality and enhancing them. Also, experiments conducted across various long-tailed benchmarks validate the comparable performance of the proposed BENet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
A reformulation neurodynamic algorithm for distributed nonconvex optimization Student behavior detection model based on multilevel residual networks and hybrid attention mechanisms Pool-mamba: Pooling state space model for low-light image enhancement Label self-correction intelligent diagnosis method and embedded system for axle box bearings of high-speed trains with noisy labels Domain-wise knowledge decoupling for personalized federated learning via Radon transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1