{"title":"Distance of mean embedding for testing independence of functional data","authors":"Mirosław Krzyśko , Łukasz Smaga , Jędrzej Wydra","doi":"10.1016/j.sigpro.2025.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate independence testing for functional data, which may be either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding - a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert–Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"233 ","pages":"Article 109959"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000738","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate independence testing for functional data, which may be either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding - a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert–Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.