Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2025-02-01 DOI:10.1016/S1872-2067(24)60199-3
Jing Liu , Xiandi Ma , Jeonghan Roh , Dongwon Shin , Ara Cho , Jeong Woo Han , Jianping Long , Zhen Zhou , Menggai Jiao , Kug-Seung Lee , EunAe Cho
{"title":"Targeted construction of high-performance single-atom platinum-based electrocatalysts for hydrogen evolution reaction","authors":"Jing Liu ,&nbsp;Xiandi Ma ,&nbsp;Jeonghan Roh ,&nbsp;Dongwon Shin ,&nbsp;Ara Cho ,&nbsp;Jeong Woo Han ,&nbsp;Jianping Long ,&nbsp;Zhen Zhou ,&nbsp;Menggai Jiao ,&nbsp;Kug-Seung Lee ,&nbsp;EunAe Cho","doi":"10.1016/S1872-2067(24)60199-3","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring platinum single-atom electrocatalysts (SACs) is of great significance for effectively catalyzing the hydrogen evolution reaction in order to maximize the utilization of metal atoms. Herein, ruthenium clusters with several atoms (Ru<sub><em>x</em></sub>) supported on nitrogen-doped, cost-efficient Black Pearls 2000 (Ru<sub><em>x</em></sub>NBP), were synthesized as initial materials <em>via</em> a simple hydrothermal method. Then, [PtCl<sub>4</sub>]<sup>2–</sup> ion was reductively deposited on Ru<sub><em>x</em></sub>NBP to obtain a Pt SAC (Pt<sub>1</sub>/Ru<sub><em>x</em></sub>NBP). Electrochemical measurements demonstrate the excellent HER performance of Pt<sub>1</sub>/Ru<sub><em>x</em></sub>NBP with a 5.7-fold increase in mass activity compared to the commercial Pt/C at 20 mV. Moreover, the cell voltage of the proton exchange membrane electrolyzer with Pt<sub>1</sub>/Ru<sub><em>x</em></sub>NBP is 20 mV lower compared to that with commercial Pt/C at 1.0 A cm<sup>−2</sup>. Physical characterization and density functional theory calculations revealed that the preserved Pt–Cl bond of [PtCl<sub>4</sub>]<sup>2–</sup> and the Ru<sub><em>x</em></sub>NBP support co-regulate the 5<em>d</em> state of isolated Pt atoms and enhance the catalytic HER capacity of Pt<sub>1</sub>/Ru<sub><em>x</em></sub>NBP.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"69 ","pages":"Pages 259-270"},"PeriodicalIF":15.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601993","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring platinum single-atom electrocatalysts (SACs) is of great significance for effectively catalyzing the hydrogen evolution reaction in order to maximize the utilization of metal atoms. Herein, ruthenium clusters with several atoms (Rux) supported on nitrogen-doped, cost-efficient Black Pearls 2000 (RuxNBP), were synthesized as initial materials via a simple hydrothermal method. Then, [PtCl4]2– ion was reductively deposited on RuxNBP to obtain a Pt SAC (Pt1/RuxNBP). Electrochemical measurements demonstrate the excellent HER performance of Pt1/RuxNBP with a 5.7-fold increase in mass activity compared to the commercial Pt/C at 20 mV. Moreover, the cell voltage of the proton exchange membrane electrolyzer with Pt1/RuxNBP is 20 mV lower compared to that with commercial Pt/C at 1.0 A cm−2. Physical characterization and density functional theory calculations revealed that the preserved Pt–Cl bond of [PtCl4]2– and the RuxNBP support co-regulate the 5d state of isolated Pt atoms and enhance the catalytic HER capacity of Pt1/RuxNBP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production Linkage engineering in covalent organic frameworks for overall photocatalytic H2O2 synthesis from water and air Pd-Pt bimetallene for the energy-saving electrochemical hydrogenation of 5-hydroxymethylfurfural Modular three-component radical fluoroalkyl-sulfuration of unactivated alkenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1