S. Khaliq , M. Younas , Z. Abbas , M.A. Aljohani , Khadijah M. Abualnaja
{"title":"Thermally radiative flow of non-Newtonian Rabinowitsch fluid through a permeable artery with multiple stenoses of varying shapes","authors":"S. Khaliq , M. Younas , Z. Abbas , M.A. Aljohani , Khadijah M. Abualnaja","doi":"10.1016/j.jrras.2025.101400","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases remain one of the leading causes of mortality worldwide, with arterial stenosis playing a crucial role in impairing blood circulation. The presence of non-uniform stenoses in permeable arteries can significantly alter hemodynamics, impacting oxygen transport and increasing the risk of severe complications. Understanding the intricate interplay between thermal radiation, viscous dissipation, and flow constraints is essential for developing effective diagnostic and therapeutic strategies. This study investigates the influence of thermal radiation and viscous dissipation on the Rabinowitsch fluid model to account for the shear-thinning nature of blood in non-uniform inclined stenosed permeable arteries under slip constraints. The research aims to bridge the gap in existing models by incorporating multiple stenosis geometries bell-shaped, W-shaped, and elliptical to provide a more comprehensive analysis of arterial flow behavior. The governing equations are formulated in dimensionless form under mild stenosis assumptions and analytically solved. Computational results reveal that the Brinkman number significantly affects fluid temperature, enhancing dissipation effects across different arterial regions. However, the presence of slip conditions and Darcy number alter this trend, particularly near the arterial walls. The stenosis height exhibits minimal influence on flow dynamics, while the slip parameter plays a dominant role in modifying velocity distributions. The findings of this study have significant biomedical implications, particularly in optimizing stent designs, improving blood flow simulations in diseased arteries, and enhancing medical interventions such as targeted drug delivery and hemodynamic regulation. The results also provide a theoretical foundation for future computational fluid dynamics (CFD) and experimental studies in arterial mechanics, aiding in early disease diagnosis and prevention strategies.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101400"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725001128","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases remain one of the leading causes of mortality worldwide, with arterial stenosis playing a crucial role in impairing blood circulation. The presence of non-uniform stenoses in permeable arteries can significantly alter hemodynamics, impacting oxygen transport and increasing the risk of severe complications. Understanding the intricate interplay between thermal radiation, viscous dissipation, and flow constraints is essential for developing effective diagnostic and therapeutic strategies. This study investigates the influence of thermal radiation and viscous dissipation on the Rabinowitsch fluid model to account for the shear-thinning nature of blood in non-uniform inclined stenosed permeable arteries under slip constraints. The research aims to bridge the gap in existing models by incorporating multiple stenosis geometries bell-shaped, W-shaped, and elliptical to provide a more comprehensive analysis of arterial flow behavior. The governing equations are formulated in dimensionless form under mild stenosis assumptions and analytically solved. Computational results reveal that the Brinkman number significantly affects fluid temperature, enhancing dissipation effects across different arterial regions. However, the presence of slip conditions and Darcy number alter this trend, particularly near the arterial walls. The stenosis height exhibits minimal influence on flow dynamics, while the slip parameter plays a dominant role in modifying velocity distributions. The findings of this study have significant biomedical implications, particularly in optimizing stent designs, improving blood flow simulations in diseased arteries, and enhancing medical interventions such as targeted drug delivery and hemodynamic regulation. The results also provide a theoretical foundation for future computational fluid dynamics (CFD) and experimental studies in arterial mechanics, aiding in early disease diagnosis and prevention strategies.
期刊介绍:
Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.