Sihan Zhao , Kangbo Yuan , Boli Li , Yushan Liu , Ruifeng Wang , Minghao Wang , Lin Jing , Weiguo Guo
{"title":"Mechanism investigation of anisotropy in impact fatigue property of laser-deposited Ti-6Al-4V","authors":"Sihan Zhao , Kangbo Yuan , Boli Li , Yushan Liu , Ruifeng Wang , Minghao Wang , Lin Jing , Weiguo Guo","doi":"10.1016/j.ijfatigue.2025.108906","DOIUrl":null,"url":null,"abstract":"<div><div>For structures that are subjected to repeated impacts in service, it is critical to evaluate their impact fatigue life. When we tested the impact fatigue performance of laser metal deposited (LMD) Ti-6Al-4V (Ti64) in different orientations with our newly developed impact fatigue test device, it was found that its impact fatigue life exhibits anisotropy. Therefore, this study carried out systematic impact fatigue tests and microscopic analysis to reveal the source of anisotropy in the impact fatigue life of LMD Ti64. The SEM results show that the fatigue crack propagation process can be divided into two stages: short crack and long crack propagation stages. The impact fatigue crack propagates along the α laths and β columnar grain boundaries at the short crack stage, while directly through columnar grains at the long crack stage. Therefore, the fatigue life at the short crack stage exhibits anisotropy. Another important finding is that the impact fatigue life is significantly shorter than the non-impact fatigue life. This is due to the large localized plastic deformation caused by the impact load, which leads to the early initiation of cracks. This work contributes to revealing the fatigue failure mechanism of LMD Ti64 under repeated impact loading.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"196 ","pages":"Article 108906"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325001033","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For structures that are subjected to repeated impacts in service, it is critical to evaluate their impact fatigue life. When we tested the impact fatigue performance of laser metal deposited (LMD) Ti-6Al-4V (Ti64) in different orientations with our newly developed impact fatigue test device, it was found that its impact fatigue life exhibits anisotropy. Therefore, this study carried out systematic impact fatigue tests and microscopic analysis to reveal the source of anisotropy in the impact fatigue life of LMD Ti64. The SEM results show that the fatigue crack propagation process can be divided into two stages: short crack and long crack propagation stages. The impact fatigue crack propagates along the α laths and β columnar grain boundaries at the short crack stage, while directly through columnar grains at the long crack stage. Therefore, the fatigue life at the short crack stage exhibits anisotropy. Another important finding is that the impact fatigue life is significantly shorter than the non-impact fatigue life. This is due to the large localized plastic deformation caused by the impact load, which leads to the early initiation of cracks. This work contributes to revealing the fatigue failure mechanism of LMD Ti64 under repeated impact loading.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.