Xiaoyu Wang , Chunyan Wang , Zhennan Liu , Yi Kang , Zhenlong Wang
{"title":"Electric heating control of agricultural greenhouse in winter using an embedded technology based chaotic particle swarm optimization PID controller","authors":"Xiaoyu Wang , Chunyan Wang , Zhennan Liu , Yi Kang , Zhenlong Wang","doi":"10.1016/j.icheatmasstransfer.2025.108777","DOIUrl":null,"url":null,"abstract":"<div><div>The agricultural greenhouse is a complicated system with changeable multi-factors. To eliminate the uncertainty of systems, intelligent algorithms are widely used to optimize the framework of the proportional, integral, and derivative (PID) controller. A particle swarm optimization with chaotic logistic mapping (CPSO) is proposed to calibrate PID parameters. The CPSO-PID is implanted into the heating control system by embedded technology (ET) to improve the energy savings and system performance of the greenhouse in winter. Computational fluid dynamic (CFD) calculates the heat and mass transfers to describe the temperature distribution. It also serves as an offline energy demand predictor to cooperate with a three-stage fan coil unit (FCU) loops online response strategy to control the heating system. The determination coefficient R<sup>2</sup> of 0.874 of the fitting results verifies that the CFD simulation reached the application level. An interference case shows the robustness of this method. In the full-scale experiments, compared with the GA-PID and PSO-PID controllers, its energy savings are 1.65 % and 8.20 % with a lower mean temperature deviation of 0.63 °C and 0.53 °C, respectively. These results show that the proposed control method can improve heating system performance with more suitable temperature, stronger adaptive capacity, faster response time, and lower energy consumption.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108777"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325002027","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The agricultural greenhouse is a complicated system with changeable multi-factors. To eliminate the uncertainty of systems, intelligent algorithms are widely used to optimize the framework of the proportional, integral, and derivative (PID) controller. A particle swarm optimization with chaotic logistic mapping (CPSO) is proposed to calibrate PID parameters. The CPSO-PID is implanted into the heating control system by embedded technology (ET) to improve the energy savings and system performance of the greenhouse in winter. Computational fluid dynamic (CFD) calculates the heat and mass transfers to describe the temperature distribution. It also serves as an offline energy demand predictor to cooperate with a three-stage fan coil unit (FCU) loops online response strategy to control the heating system. The determination coefficient R2 of 0.874 of the fitting results verifies that the CFD simulation reached the application level. An interference case shows the robustness of this method. In the full-scale experiments, compared with the GA-PID and PSO-PID controllers, its energy savings are 1.65 % and 8.20 % with a lower mean temperature deviation of 0.63 °C and 0.53 °C, respectively. These results show that the proposed control method can improve heating system performance with more suitable temperature, stronger adaptive capacity, faster response time, and lower energy consumption.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.