An enhanced temperature field inversion model by POD-BPNN-GA method for a 3D wing with limited sensors

Jia-Xin Hu, Jian-Jun Gou, Chun-Lin Gong
{"title":"An enhanced temperature field inversion model by POD-BPNN-GA method for a 3D wing with limited sensors","authors":"Jia-Xin Hu,&nbsp;Jian-Jun Gou,&nbsp;Chun-Lin Gong","doi":"10.1016/j.icheatmasstransfer.2025.108778","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate inversion of global temperature is crucial to the state evaluation of high-speed aircraft since the real data can only be acquired by very limited local sensors. In this work, a temperature field inversion model combining real sensor data is developed for a 3D aircraft wing structure with heat transport paths. The model is trained by the Back Propagation Neural Network method with optimized critical hyperparameters, i.e., max epochs, width, depth and data dimensionality. The pre-generated sample temperature fields are fully decomposed into proper orthogonal modes, the principal features are extracted to form matched data dimensionality, and the model construction efficiency is significantly improved with very little accuracy compromise. A hybrid genetic algorithm is proposed to optimize the sensor locations and numbers simultaneously with integrated considerations of inversion error and cost, and the model performance is greatly enhanced by gathering sensors to high temperature gradient region. The test results indicate great performance with the mean relative inversion error, the mean absolute inversion error and the sensor number reduction of 0.063 %, 0.496 K and 60 %, respectively and the advantages of the TFI model are verified by the comparison with Random Forest, Radial Basis Function Neural Network and Convolutional Neural Network methods.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108778"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325002039","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate inversion of global temperature is crucial to the state evaluation of high-speed aircraft since the real data can only be acquired by very limited local sensors. In this work, a temperature field inversion model combining real sensor data is developed for a 3D aircraft wing structure with heat transport paths. The model is trained by the Back Propagation Neural Network method with optimized critical hyperparameters, i.e., max epochs, width, depth and data dimensionality. The pre-generated sample temperature fields are fully decomposed into proper orthogonal modes, the principal features are extracted to form matched data dimensionality, and the model construction efficiency is significantly improved with very little accuracy compromise. A hybrid genetic algorithm is proposed to optimize the sensor locations and numbers simultaneously with integrated considerations of inversion error and cost, and the model performance is greatly enhanced by gathering sensors to high temperature gradient region. The test results indicate great performance with the mean relative inversion error, the mean absolute inversion error and the sensor number reduction of 0.063 %, 0.496 K and 60 %, respectively and the advantages of the TFI model are verified by the comparison with Random Forest, Radial Basis Function Neural Network and Convolutional Neural Network methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
Active thermal cloaks enabled by active coordinate transformation theory Numerical investigation on the effect of combined convective and radiative heat transfer on thermal runaway propagation in aligned air-cooled cylindrical Li-ion battery modules Thermal performance and ageing effects to model the life cycle assessment of heat-protective thermal insulation materials in pipe systems A comprehensive review of miscellaneous heat transfer enhancement designs of phase change material integrated heat exchanger Design and experimental study on passive heat dissipation system of MRB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1