Pore-scale relative permeability and saturation analysis under wide-ranging injection velocity and wettability during primary CO2 injection for geological carbon sequestration
Muhammad Nasir, Shintaro Matsushita, Kailin Wang, Masayuki Osada, Shu Yamashita, Wilson Susanto, Sotheavuth Sin, Tetsuya Suekane
{"title":"Pore-scale relative permeability and saturation analysis under wide-ranging injection velocity and wettability during primary CO2 injection for geological carbon sequestration","authors":"Muhammad Nasir, Shintaro Matsushita, Kailin Wang, Masayuki Osada, Shu Yamashita, Wilson Susanto, Sotheavuth Sin, Tetsuya Suekane","doi":"10.1016/j.advwatres.2025.104938","DOIUrl":null,"url":null,"abstract":"<div><div>We performed two-dimensional (2D) pore-scale simulations of primary CO<sub>2</sub> injection using a weakly compressible scheme for geological carbon sequestration (GCS) applications. The aim was to analyze pore-scale relative permeability and saturation of CO<sub>2</sub> under wide-ranging injection velocities and wettabilities. The results show that saturation is highest for viscous fingering, lowest for crossover (− 5.82 < <em>logCa</em> < − 4.86; θ < 60°), and remains high in the capillary fingering regime even though the relative permeability of CO<sub>2</sub> is minimum. This trend occurs because saturation is influenced not only by the value of relative permeability but also by the frequency of relative permeability fluctuations. At a low injection velocity and contact angle, frequent permeability fluctuations due to Haines jumps result in high saturation despite the low relative permeability. At intermediate injection velocity and low contact angle, both the relative permeability and its fluctuations are moderate, leading to lower CO<sub>2</sub> saturation. The present work bridges the understanding of displacement-front advancement at the pore-network scale with relative permeability, which links the pore-scale meniscus dynamics with the large-scale Darcy-flow parameters. As the CO<sub>2</sub> flows away from the injection site in large-scale GCS applications, the displacement pattern exhibits crossover regime, resulting in minimal displacement efficiency. In a strongly wetting porous medium, this condition is severe because crossover regime spans a wide range of capillary numbers.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"199 ","pages":"Article 104938"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000521","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
We performed two-dimensional (2D) pore-scale simulations of primary CO2 injection using a weakly compressible scheme for geological carbon sequestration (GCS) applications. The aim was to analyze pore-scale relative permeability and saturation of CO2 under wide-ranging injection velocities and wettabilities. The results show that saturation is highest for viscous fingering, lowest for crossover (− 5.82 < logCa < − 4.86; θ < 60°), and remains high in the capillary fingering regime even though the relative permeability of CO2 is minimum. This trend occurs because saturation is influenced not only by the value of relative permeability but also by the frequency of relative permeability fluctuations. At a low injection velocity and contact angle, frequent permeability fluctuations due to Haines jumps result in high saturation despite the low relative permeability. At intermediate injection velocity and low contact angle, both the relative permeability and its fluctuations are moderate, leading to lower CO2 saturation. The present work bridges the understanding of displacement-front advancement at the pore-network scale with relative permeability, which links the pore-scale meniscus dynamics with the large-scale Darcy-flow parameters. As the CO2 flows away from the injection site in large-scale GCS applications, the displacement pattern exhibits crossover regime, resulting in minimal displacement efficiency. In a strongly wetting porous medium, this condition is severe because crossover regime spans a wide range of capillary numbers.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes