{"title":"Faster R-CNN model for target recognition and diagnosis of scapular fractures","authors":"Qiong Fang , Anhong Jiang , Meimei Liu , Sen Zhao","doi":"10.1016/j.jbo.2025.100664","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aims to establish a diagnostic model for scapular fractures using a convolutional neural network (CNN) and to discuss the clinical advantages of this model in diagnosing such complex conditions.</div></div><div><h3>Methods</h3><div>Computed tomography (CT) images of 90 patients with scapular fractures were collected. A faster R-CNN-based recognition model was developed and compared with manual diagnosis. External validation was conducted to evaluate the model’s accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.</div></div><div><h3>Results</h3><div>The CNN model, when combined with medical expert interpretation, demonstrated significantly higher specificity and positive predictive value compared to orthopedist-independent interpretation and algorithm-independent prediction (P < 0.05). The area under the curve (AUC) value of the combined approach was significantly higher than that of orthopedist-independent interpretation and algorithm-independent prediction groups, with statistically significant differences (P < 0.05). The accuracy of the CNN algorithm model combined with orthopedist interpretation was 97.78 %, significantly higher than orthopedist-independent interpretation (82.95 %) and CNN algorithm-independent prediction (92.05 %) (P < 0.05).</div></div><div><h3>Conclusions</h3><div>The CNN-based recognition model for scapular fractures can assist clinicians in improving their diagnostic accuracy and precision in identifying such fractures on CT images.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"51 ","pages":"Article 100664"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137425000053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This study aims to establish a diagnostic model for scapular fractures using a convolutional neural network (CNN) and to discuss the clinical advantages of this model in diagnosing such complex conditions.
Methods
Computed tomography (CT) images of 90 patients with scapular fractures were collected. A faster R-CNN-based recognition model was developed and compared with manual diagnosis. External validation was conducted to evaluate the model’s accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Results
The CNN model, when combined with medical expert interpretation, demonstrated significantly higher specificity and positive predictive value compared to orthopedist-independent interpretation and algorithm-independent prediction (P < 0.05). The area under the curve (AUC) value of the combined approach was significantly higher than that of orthopedist-independent interpretation and algorithm-independent prediction groups, with statistically significant differences (P < 0.05). The accuracy of the CNN algorithm model combined with orthopedist interpretation was 97.78 %, significantly higher than orthopedist-independent interpretation (82.95 %) and CNN algorithm-independent prediction (92.05 %) (P < 0.05).
Conclusions
The CNN-based recognition model for scapular fractures can assist clinicians in improving their diagnostic accuracy and precision in identifying such fractures on CT images.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.