A multi-step interaction network for multi-class classification based on OCT and OCTA images

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-02-27 DOI:10.1016/j.inffus.2025.103041
Han Zhang, Xuening Bai, Guangyao Hou, Xiongwen Quan
{"title":"A multi-step interaction network for multi-class classification based on OCT and OCTA images","authors":"Han Zhang,&nbsp;Xuening Bai,&nbsp;Guangyao Hou,&nbsp;Xiongwen Quan","doi":"10.1016/j.inffus.2025.103041","DOIUrl":null,"url":null,"abstract":"<div><div>OCT and OCTA images are important basis for diagnosing multiple ophthalmic diseases. However, it is a challenge to fuse these two modalities with high redundancy and simultaneous projection of 3D data for multi-class classification. This paper proposes a novel Multi-step Interaction Network (MINet) for projection and feature fusion as a unified framework, where OCT and OCTA images deeply interact for a seven-class classification task of ophthalmic diseases. Firstly, we design a Multi-modal Interaction Projection Module to iterate projection and shallow information interaction for effective feature selection. Secondly, a Feature Redundancy Removal Module compares the feature difference information between the two modalities to eliminate redundancy. Thirdly, the Feature Interaction Fusion Module utilizes the differential modal information from the backbone CNN to perform respective modal attention and achieve interactive fusion. Finally, a classifier module generates multi-class classification results. Experimental results show that our method achieved Accuracy of 0.8690, Precision of 0.6921, Recall of 0.7250, and F1 score of 0.7081 on the OCTA-500 dataset. Comparative experiments with other state-of-the-art methods for OCT image classification, along with ablation experiments, demonstrate the superior performance of MINet.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103041"},"PeriodicalIF":15.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001149","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

OCT and OCTA images are important basis for diagnosing multiple ophthalmic diseases. However, it is a challenge to fuse these two modalities with high redundancy and simultaneous projection of 3D data for multi-class classification. This paper proposes a novel Multi-step Interaction Network (MINet) for projection and feature fusion as a unified framework, where OCT and OCTA images deeply interact for a seven-class classification task of ophthalmic diseases. Firstly, we design a Multi-modal Interaction Projection Module to iterate projection and shallow information interaction for effective feature selection. Secondly, a Feature Redundancy Removal Module compares the feature difference information between the two modalities to eliminate redundancy. Thirdly, the Feature Interaction Fusion Module utilizes the differential modal information from the backbone CNN to perform respective modal attention and achieve interactive fusion. Finally, a classifier module generates multi-class classification results. Experimental results show that our method achieved Accuracy of 0.8690, Precision of 0.6921, Recall of 0.7250, and F1 score of 0.7081 on the OCTA-500 dataset. Comparative experiments with other state-of-the-art methods for OCT image classification, along with ablation experiments, demonstrate the superior performance of MINet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于OCT和OCTA图像的多步交互分类网络
OCT和OCTA图像是诊断多发性眼病的重要依据。然而,如何将这两种模式融合在一起,使其具有高冗余度和同时投影的三维数据用于多类分类是一个挑战。本文提出了一种新的多步交互网络(Multi-step Interaction Network, MINet),将OCT和OCTA图像深度交互,作为投影和特征融合的统一框架,用于眼科疾病的七类分类任务。首先,我们设计了一个多模态交互投影模块,迭代投影和浅层信息交互,有效地选择特征;其次,特征冗余去除模块比较两种模式之间的特征差异信息以消除冗余。第三,Feature Interaction Fusion Module利用骨干CNN的差分模态信息分别进行模态关注,实现交互融合。最后,分类器模块生成多类分类结果。实验结果表明,该方法在OCTA-500数据集上的准确率为0.8690,精密度为0.6921,召回率为0.7250,F1分数为0.7081。与其他最先进的OCT图像分类方法进行对比实验,以及消融实验,证明了MINet的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
A Unified Optimization Framework for Backdoor Attacks in Large Language Models GTEE: A Global Timestamp Encoding Enhanced Method for Robust Time Series Imputation in Complex Missing Scenarios PIA: Fusing Edge Prior Information into Attention for Semantic Segmentation in Vision Transformer Multimodal Dynamic Fusion Framework for Survival Prediction in Clear Cell Renal Cell Carcinoma URL2Graph++: Unified Semantic-Structural-Character Learning for Malicious URL Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1