Impact of internal pressure control during manufacturing on residual stresses and safety performance of type 4 pressure vessels

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2025-03-02 DOI:10.1016/j.jcomc.2025.100581
Bartosz Popiela , Stephan Günzel , Marcus Schukar , Georg W. Mair , Katerina Krebber , Holger Seidlitz
{"title":"Impact of internal pressure control during manufacturing on residual stresses and safety performance of type 4 pressure vessels","authors":"Bartosz Popiela ,&nbsp;Stephan Günzel ,&nbsp;Marcus Schukar ,&nbsp;Georg W. Mair ,&nbsp;Katerina Krebber ,&nbsp;Holger Seidlitz","doi":"10.1016/j.jcomc.2025.100581","DOIUrl":null,"url":null,"abstract":"<div><div>Composite pressure vessels are commonly manufactured using the wet filament winding process, where various process parameters can influence the performance of the finished component. In this study two designs of wet filament wound 6.8-liter type 4 composite pressure vessels were manufactured. Both differ only by the internal pressure used during the filament winding, which primarily influences the residual stress state in the composite structure. An extensive experimental study was carried out, including 10 slow burst tests and strain measurements with fiber optic sensors. Significant differences can be observed in the performance of the two designs even though the used stacking sequence, materials and other manufacturing parameters are the same for both designs. A discussion of the differences in the behavior of both cylinder types is provided, including the strain distribution in slow burst tests and failure mechanism.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100581"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Composite pressure vessels are commonly manufactured using the wet filament winding process, where various process parameters can influence the performance of the finished component. In this study two designs of wet filament wound 6.8-liter type 4 composite pressure vessels were manufactured. Both differ only by the internal pressure used during the filament winding, which primarily influences the residual stress state in the composite structure. An extensive experimental study was carried out, including 10 slow burst tests and strain measurements with fiber optic sensors. Significant differences can be observed in the performance of the two designs even though the used stacking sequence, materials and other manufacturing parameters are the same for both designs. A discussion of the differences in the behavior of both cylinder types is provided, including the strain distribution in slow burst tests and failure mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Impact of internal pressure control during manufacturing on residual stresses and safety performance of type 4 pressure vessels Mechanical performance of aluminum/copper/aluminum nanocomposite at different temperatures using molecular dynamics simulation Planar fibre winding for topological optimized composite structures Comparative analysis of shear behavior in continuous low-strength RC beams strengthened with BFRP and CFRP: An experimental and numerical investigation Optimal selection of composite layup considering the fuselage crashworthiness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1