Modulating higher-order statistics of turbulent boundary layer wind fields using randomized grid roughness

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-03-06 DOI:10.1016/j.jweia.2025.106042
Mariel Ojeda-Tuz , Mohit Chauhan , Pedro Fernández-Cabán , Ryan Catarelli , Michael Shields , Kurtis Gurley
{"title":"Modulating higher-order statistics of turbulent boundary layer wind fields using randomized grid roughness","authors":"Mariel Ojeda-Tuz ,&nbsp;Mohit Chauhan ,&nbsp;Pedro Fernández-Cabán ,&nbsp;Ryan Catarelli ,&nbsp;Michael Shields ,&nbsp;Kurtis Gurley","doi":"10.1016/j.jweia.2025.106042","DOIUrl":null,"url":null,"abstract":"<div><div>Near ground wind velocity observations and wind tunnel measurements have identified height dependent non-Gaussian behavior in longitudinal wind turbulence. The potential sensitivity of bluff body peak pressure loads to non-Gaussian turbulence motivates an investigation to modulate longitudinal skewness in the approach flow through passive mechanical turbulence generation. It is currently an open question as to whether higher-order properties of turbulence can be modulated via roughness element grid. This research leverages outcomes from a recent active machine learning experimental study to modulate turbulence profiles in a boundary layer wind tunnel using an automated roughness grid. Reynolds stress fraction analyses of turbulence data from hundreds of non-homogeneous roughness configurations are related to the observed along wind turbulence skewness profile. The results identify a relationship between roughness element configuration features and resultant skewness profiles, providing insights into modulating higher-order longitudinal turbulence behavior in boundary layer wind simulation.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"261 ","pages":"Article 106042"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000388","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Near ground wind velocity observations and wind tunnel measurements have identified height dependent non-Gaussian behavior in longitudinal wind turbulence. The potential sensitivity of bluff body peak pressure loads to non-Gaussian turbulence motivates an investigation to modulate longitudinal skewness in the approach flow through passive mechanical turbulence generation. It is currently an open question as to whether higher-order properties of turbulence can be modulated via roughness element grid. This research leverages outcomes from a recent active machine learning experimental study to modulate turbulence profiles in a boundary layer wind tunnel using an automated roughness grid. Reynolds stress fraction analyses of turbulence data from hundreds of non-homogeneous roughness configurations are related to the observed along wind turbulence skewness profile. The results identify a relationship between roughness element configuration features and resultant skewness profiles, providing insights into modulating higher-order longitudinal turbulence behavior in boundary layer wind simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Influence of levitation bogie structure aerodynamic loads on the dynamic performance of 600 km/h EMS maglev train Editorial Board Modulating higher-order statistics of turbulent boundary layer wind fields using randomized grid roughness Discussion of: “A simplified analytical formula for the coefficient of 3rd-order Hermite model and its application” by Weihu Chen and Yuji Tian A proposed approach for combined wind and temperature loading of power transmission lines considering climate change effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1