Dietary trace mineral (Cu, Fe, Mn, Zn, and Se) source and levels on production parameters, fillet quality, mineralization, and skin morphology of 1+ and 0+ Atlantic salmon across regions in Norway

IF 3.9 1区 农林科学 Q1 FISHERIES Aquaculture Pub Date : 2025-03-01 DOI:10.1016/j.aquaculture.2025.742375
Marialena Kokkali , Jens-Erik Dessen , Lene Sveen , Arnaud Lefrancois , Gerrit Timmerhaus , Elin Kvamme , Antony J. Prabhu Philip , Katerina Kousoulaki
{"title":"Dietary trace mineral (Cu, Fe, Mn, Zn, and Se) source and levels on production parameters, fillet quality, mineralization, and skin morphology of 1+ and 0+ Atlantic salmon across regions in Norway","authors":"Marialena Kokkali ,&nbsp;Jens-Erik Dessen ,&nbsp;Lene Sveen ,&nbsp;Arnaud Lefrancois ,&nbsp;Gerrit Timmerhaus ,&nbsp;Elin Kvamme ,&nbsp;Antony J. Prabhu Philip ,&nbsp;Katerina Kousoulaki","doi":"10.1016/j.aquaculture.2025.742375","DOIUrl":null,"url":null,"abstract":"<div><div>The shift from marine-based to plant-based ingredients in Atlantic salmon feeds presents a complex challenge due to varying nutrient levels and combinations, including mineral levels. Studying the effects of new feeds in large, slaughter-ready fish poses logistical and financial challenges. Unlike most mineral nutrition research studies, typically conducted under controlled conditions, the current study utilizes large-scale research license experiments, providing a vast amount of systematically gathered information. This approach allows for a more conclusive overview of how mineral supplementation affects salmon production in a commercial setup. This study aimed to explore the practical implications of using different dietary levels of essential trace minerals (Cu, Fe, Mn, Zn, and Se) in either organic or inorganic forms in salmon feeds. A total of 12 full-scale feeding trials were conducted across three locations representative of Norwegian salmon production: Northern, Mid, and Western Norway. Each location included four trials with nutritional interventions replicated for 1+ and 0+ smolt. Results indicated that quality parameters, slaughter yield, and welfare indicators were significantly influenced by smolt age, location, and mineral level. Specifically, reduced Fe levels mitigated prooxidative effects and increased the availability of essential trace minerals, while increased Zn supplementation improved skin welfare. The use of organic minerals resulted in reduced gaping, elevated mineral levels in key tissues, and enhanced production performance. This article highlights the complex interplay between dietary mineral supplementation and fish performance, quality, welfare indicators, and tissue mineralization in commercially produced Atlantic salmon. The findings from this study demonstrate the critical role of trace minerals in improving mineral availability and overall fish welfare, underscoring the importance of considering multiple factors in formulating optimal feed compositions for enhancing fish health, performance, and welfare in aquaculture practices. These insights offer significant advancements over previous studies by providing practical solutions to the challenges of modern feed formulations and their impacts on Atlantic salmon production.</div></div>","PeriodicalId":8375,"journal":{"name":"Aquaculture","volume":"602 ","pages":"Article 742375"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0044848625002613","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

The shift from marine-based to plant-based ingredients in Atlantic salmon feeds presents a complex challenge due to varying nutrient levels and combinations, including mineral levels. Studying the effects of new feeds in large, slaughter-ready fish poses logistical and financial challenges. Unlike most mineral nutrition research studies, typically conducted under controlled conditions, the current study utilizes large-scale research license experiments, providing a vast amount of systematically gathered information. This approach allows for a more conclusive overview of how mineral supplementation affects salmon production in a commercial setup. This study aimed to explore the practical implications of using different dietary levels of essential trace minerals (Cu, Fe, Mn, Zn, and Se) in either organic or inorganic forms in salmon feeds. A total of 12 full-scale feeding trials were conducted across three locations representative of Norwegian salmon production: Northern, Mid, and Western Norway. Each location included four trials with nutritional interventions replicated for 1+ and 0+ smolt. Results indicated that quality parameters, slaughter yield, and welfare indicators were significantly influenced by smolt age, location, and mineral level. Specifically, reduced Fe levels mitigated prooxidative effects and increased the availability of essential trace minerals, while increased Zn supplementation improved skin welfare. The use of organic minerals resulted in reduced gaping, elevated mineral levels in key tissues, and enhanced production performance. This article highlights the complex interplay between dietary mineral supplementation and fish performance, quality, welfare indicators, and tissue mineralization in commercially produced Atlantic salmon. The findings from this study demonstrate the critical role of trace minerals in improving mineral availability and overall fish welfare, underscoring the importance of considering multiple factors in formulating optimal feed compositions for enhancing fish health, performance, and welfare in aquaculture practices. These insights offer significant advancements over previous studies by providing practical solutions to the challenges of modern feed formulations and their impacts on Atlantic salmon production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture
Aquaculture 农林科学-海洋与淡水生物学
CiteScore
8.60
自引率
17.80%
发文量
1246
审稿时长
56 days
期刊介绍: Aquaculture is an international journal for the exploration, improvement and management of all freshwater and marine food resources. It publishes novel and innovative research of world-wide interest on farming of aquatic organisms, which includes finfish, mollusks, crustaceans and aquatic plants for human consumption. Research on ornamentals is not a focus of the Journal. Aquaculture only publishes papers with a clear relevance to improving aquaculture practices or a potential application.
期刊最新文献
Fermented spent coffee ground in African catfish (Clarias gariepinus) diets: Effects on growth performance, digestive enzyme, protein digestibility, amino acid profile, and immune-related gene Comparative transcriptome analysis reveals distinct immune response in different ploidy cyprinid caudal fin cells following SVCV infection On the impact of biological risk in aquaculture valuation and decision making Antibiotic oxytetracycline is affecting the dynamics of serotonergic response in brain of coho salmon Long term effects of smolt and post-smolt production strategy on mortality, growth, sexual maturation and melanized focal changes in farmed Atlantic salmon (Salmo salar L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1