CAEAID: An incremental contrast learning-based intrusion detection framework for IoT networks

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2025-03-02 DOI:10.1016/j.comnet.2025.111161
Zinuo Yin , Hongchang Chen , Hailong Ma , Tao Hu , Luxin Bai
{"title":"CAEAID: An incremental contrast learning-based intrusion detection framework for IoT networks","authors":"Zinuo Yin ,&nbsp;Hongchang Chen ,&nbsp;Hailong Ma ,&nbsp;Tao Hu ,&nbsp;Luxin Bai","doi":"10.1016/j.comnet.2025.111161","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, the swiftly advancing and intricately diverse IoT node devices produces high-dimensional, discrete, and temporally dynamic network traffic feature data. The ensuing data distribution sparsity and concept drift can critically impair the effectiveness of traditional deep learning-based intrusion detection models. To address these issues, we propose an incremental contrastive learning-based intrusion detection framework for IoT networks, CAEAID. On one hand, to tackle the high-dimensional sparse distribution of traffic, we construct a contrastive autoencoder. It effectively learns low-dimensional latent representations of IoT traffic features by minimizing the distance between similar samples while maximizing the distance between dissimilar samples. Subsequently, we identify abnormal traffic based on distance. The contrastive autoencoder clarifies the boundaries of traffic categories and alleviates the challenges posed by high-dimensional sparse spaces. Simultaneously, we apply improved extreme value theory to fit IoT traffic features and adaptively establish thresholds for detecting extreme discrete anomalous traffic for auxiliary analysis. On the other hand, to handle concept drift, CAEAID creates a pseudo-labeled dataset based on detection consistency, enabling incremental learning and periodic model updates for adaptive detection. Experimental results indicate that compared to other advanced methods, CAEAID improves the accuracy on the IoTID20 and CICIDS2018 datasets by at least 1.15% and 1.72%, respectively. Furthermore, the framework demonstrates superior performance in precision, recall, and F1-score.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111161"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138912862500129X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the swiftly advancing and intricately diverse IoT node devices produces high-dimensional, discrete, and temporally dynamic network traffic feature data. The ensuing data distribution sparsity and concept drift can critically impair the effectiveness of traditional deep learning-based intrusion detection models. To address these issues, we propose an incremental contrastive learning-based intrusion detection framework for IoT networks, CAEAID. On one hand, to tackle the high-dimensional sparse distribution of traffic, we construct a contrastive autoencoder. It effectively learns low-dimensional latent representations of IoT traffic features by minimizing the distance between similar samples while maximizing the distance between dissimilar samples. Subsequently, we identify abnormal traffic based on distance. The contrastive autoencoder clarifies the boundaries of traffic categories and alleviates the challenges posed by high-dimensional sparse spaces. Simultaneously, we apply improved extreme value theory to fit IoT traffic features and adaptively establish thresholds for detecting extreme discrete anomalous traffic for auxiliary analysis. On the other hand, to handle concept drift, CAEAID creates a pseudo-labeled dataset based on detection consistency, enabling incremental learning and periodic model updates for adaptive detection. Experimental results indicate that compared to other advanced methods, CAEAID improves the accuracy on the IoTID20 and CICIDS2018 datasets by at least 1.15% and 1.72%, respectively. Furthermore, the framework demonstrates superior performance in precision, recall, and F1-score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Design and evaluation of an Autonomous Cyber Defence agent using DRL and an augmented LLM CAEAID: An incremental contrast learning-based intrusion detection framework for IoT networks Enabling efficient collection and usage of network performance metrics at the edge UGL: A comprehensive hybrid model integrating GCN and LSTM for enhanced intrusion detection in UAV controller area networks Collaborative cloud–edge task scheduling scheme in the networked UAV Internet of Battlefield Things (IoBT) territories based on deep reinforcement learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1