The catalytic performance of Bi2WO6-Fe3O4/rGO for the removal of rhodamine B under visible light

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2025-03-01 DOI:10.1016/j.flatc.2025.100838
Meghdad Pirsaheb , Borhan Mansouri , Zeinab Jafari
{"title":"The catalytic performance of Bi2WO6-Fe3O4/rGO for the removal of rhodamine B under visible light","authors":"Meghdad Pirsaheb ,&nbsp;Borhan Mansouri ,&nbsp;Zeinab Jafari","doi":"10.1016/j.flatc.2025.100838","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this work was to study the catalytic performance of Bi<sub>2</sub>WO<sub>6</sub>-Fe<sub>3</sub>O<sub>4</sub>/rGO on the rhodamine B degradation using H<sub>2</sub>O<sub>2</sub> activation with visible light. Characteristics of the Bi<sub>2</sub>WO<sub>6</sub>-Fe<sub>3</sub>O<sub>4</sub>/rGO catalyst were analyzed via various techniques. The results displayed that the optimum conditions (16 mg L<sup>−1</sup> pollutant, nanocomposite value 0.8 g L<sup>−1</sup>, 2.6 mM H<sub>2</sub>O<sub>2</sub>, pH 5), the elimination efficiency of rhodamine B 96 % was obtained after 40 min. Moreover, the radical scavenger experiments confirmed that hydroxyl radical (OH<sup>•</sup>) and superoxide radical (O<sub>2</sub><sup>∙-</sup>) contributed to the pollutant degradation, and OH<sup>•</sup> has a dominant role. In addition, Bi<sub>2</sub>WO<sub>6</sub>-Fe<sub>3</sub>O<sub>4</sub>/rGO exhibited the good stability and reusability. This study illustrated that the simultaneous presence of Bi<sub>2</sub>WO<sub>6</sub><strong>-</strong>Fe<sub>3</sub>O<sub>4</sub>/rGO with H<sub>2</sub>O<sub>2</sub> has a high potential for the degradation of organic pollutant.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100838"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000327","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work was to study the catalytic performance of Bi2WO6-Fe3O4/rGO on the rhodamine B degradation using H2O2 activation with visible light. Characteristics of the Bi2WO6-Fe3O4/rGO catalyst were analyzed via various techniques. The results displayed that the optimum conditions (16 mg L−1 pollutant, nanocomposite value 0.8 g L−1, 2.6 mM H2O2, pH 5), the elimination efficiency of rhodamine B 96 % was obtained after 40 min. Moreover, the radical scavenger experiments confirmed that hydroxyl radical (OH) and superoxide radical (O2∙-) contributed to the pollutant degradation, and OH has a dominant role. In addition, Bi2WO6-Fe3O4/rGO exhibited the good stability and reusability. This study illustrated that the simultaneous presence of Bi2WO6-Fe3O4/rGO with H2O2 has a high potential for the degradation of organic pollutant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
Construction of single-site catalysts by synergism of micropore trapping and nitrogen anchoring: A theoretical insight Preparation and properties of the PDMS/h-BN/PDA composite anti-corrosion coating on a carbon steel surface Synthesis of porous MXene for efficient bifunctional electrocatalysis in overall water splitting: Hydrogen and oxygen evolution reactions Synthesis of two-dimensional SnO2-WO3 (2D-TTO) heterojunction Nanosheet and its application as a highly sensitive and selective fluorescence sensor for Nifedipine detection in biological and environmental samples The catalytic performance of Bi2WO6-Fe3O4/rGO for the removal of rhodamine B under visible light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1