Straightforward MALDI-TOF MS based screening approach for selection of recombinant protein-expressing E. coli

I.N. Kravtsov , A.I. Solovyev , E.A. Potemkina , A.V. Kartashova , M.A. Dmitrieva , K.V. Danilova , I.L. Tutykhina , N.B. Polyakov , V.D. Desinov , D.A. Egorova , A.L. Gintsburg
{"title":"Straightforward MALDI-TOF MS based screening approach for selection of recombinant protein-expressing E. coli","authors":"I.N. Kravtsov ,&nbsp;A.I. Solovyev ,&nbsp;E.A. Potemkina ,&nbsp;A.V. Kartashova ,&nbsp;M.A. Dmitrieva ,&nbsp;K.V. Danilova ,&nbsp;I.L. Tutykhina ,&nbsp;N.B. Polyakov ,&nbsp;V.D. Desinov ,&nbsp;D.A. Egorova ,&nbsp;A.L. Gintsburg","doi":"10.1016/j.biotno.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Recombinant protein production is a milestone of modern biotechnology, drug development and scientific research. When obtaining recombinant protein producers, differences in expression levels among clones necessitate screening. Traditional widely used methods include protein electrophoresis and western blot hybridization. This protocol provides high-throughput advantages by eliminating time-consuming steps inherent to traditional methods, such as cell lysis, protein extraction, purification, antibody-based detection, and gel-based analysis. MALDI-TOF MS represents a simple, rapid and cost-effective method for bacterial species identification through protein fingerprint signature in clinical diagnostics, but not practically integrated into biotechnological workflow. This study proposes a fast and easy method for screening <em>E. coli</em> clones producing recombinant proteins with MALDI-TOF MS. The proposed method demonstrated efficiency in screening of <em>E. coli</em> producing several recombinant proteins with different properties: sfGFP; bacterial DNA binding proteins IHF<em>α</em>, IHF<em>β</em>, HU; bacteriophage protein GP46 and camelid VHH antibody fragments.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 100-105"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906925000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinant protein production is a milestone of modern biotechnology, drug development and scientific research. When obtaining recombinant protein producers, differences in expression levels among clones necessitate screening. Traditional widely used methods include protein electrophoresis and western blot hybridization. This protocol provides high-throughput advantages by eliminating time-consuming steps inherent to traditional methods, such as cell lysis, protein extraction, purification, antibody-based detection, and gel-based analysis. MALDI-TOF MS represents a simple, rapid and cost-effective method for bacterial species identification through protein fingerprint signature in clinical diagnostics, but not practically integrated into biotechnological workflow. This study proposes a fast and easy method for screening E. coli clones producing recombinant proteins with MALDI-TOF MS. The proposed method demonstrated efficiency in screening of E. coli producing several recombinant proteins with different properties: sfGFP; bacterial DNA binding proteins IHFα, IHFβ, HU; bacteriophage protein GP46 and camelid VHH antibody fragments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Deciphering Rickettsia conorii metabolic pathways: A treasure map to therapeutic targets Effect of temperature and CO2 concentration on biological nutrient removal from tertiary municipal wastewater using microalgae Chlorella prototheocoides Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review Microbial amidases: Characterization, advances and biotechnological applications Current biosensing strategies based on in vitro T7 RNA polymerase reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1