A high-dimensional feature selection algorithm via fast dimensionality reduction and multi-objective differential evolution

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2025-03-04 DOI:10.1016/j.swevo.2025.101899
Xuezhi Yue , Yihang Liao , Hu Peng , Lanlan Kang , Yuan Zeng
{"title":"A high-dimensional feature selection algorithm via fast dimensionality reduction and multi-objective differential evolution","authors":"Xuezhi Yue ,&nbsp;Yihang Liao ,&nbsp;Hu Peng ,&nbsp;Lanlan Kang ,&nbsp;Yuan Zeng","doi":"10.1016/j.swevo.2025.101899","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-objective feature selection problem typically involves two key objectives: minimizing the number of selected features and maximizing classification performance. However, most multi-objective evolutionary algorithms (MOEAs) face challenges in high-dimensional datasets, including low search efficiency and potential loss of search space. To address these challenges, this paper proposes a hybrid algorithm based on fast dimensionality reduction and multi-objective differential evolution with redundant and preference processing (termed DR-RPMODE). In DR-RPMODE, the DR phase uses the freezing and activation operators to remove many irrelevant and redundant features in the high-dimensional datasets, thereby achieving fast dimensionality reduction. Subsequently, the RPMODE algorithm continues the search on the reduced datasets, improving the traditional differential evolutionary framework from two aspects: duplicated and redundant solutions are filtered by redundant handling, and a preference handling method that pays more attention to classification performance is designed for different preference objectives of decision-makers. In the experiment, DR-RPMODE is compared with seven feature selection algorithms on 16 classification datasets. The results indicate that DR-RPMODE outperforms the comparison algorithms on most datasets, demonstrating that it not only achieves outstanding optimization performance but also obtains good classification and scalability results.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"94 ","pages":"Article 101899"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000574","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-objective feature selection problem typically involves two key objectives: minimizing the number of selected features and maximizing classification performance. However, most multi-objective evolutionary algorithms (MOEAs) face challenges in high-dimensional datasets, including low search efficiency and potential loss of search space. To address these challenges, this paper proposes a hybrid algorithm based on fast dimensionality reduction and multi-objective differential evolution with redundant and preference processing (termed DR-RPMODE). In DR-RPMODE, the DR phase uses the freezing and activation operators to remove many irrelevant and redundant features in the high-dimensional datasets, thereby achieving fast dimensionality reduction. Subsequently, the RPMODE algorithm continues the search on the reduced datasets, improving the traditional differential evolutionary framework from two aspects: duplicated and redundant solutions are filtered by redundant handling, and a preference handling method that pays more attention to classification performance is designed for different preference objectives of decision-makers. In the experiment, DR-RPMODE is compared with seven feature selection algorithms on 16 classification datasets. The results indicate that DR-RPMODE outperforms the comparison algorithms on most datasets, demonstrating that it not only achieves outstanding optimization performance but also obtains good classification and scalability results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A heuristic distributed and no-wait method for solving multiagent task allocation problems with coupled temporal constraints Dynamic multi-objective evolutionary algorithm based on dual-layer collaborative prediction under multiple perspective EABC-AS: Elite-driven artificial bee colony algorithm with adaptive population scaling Benchmarking footprints of continuous black-box optimization algorithms: Explainable insights into algorithm success and failure A high-dimensional feature selection algorithm via fast dimensionality reduction and multi-objective differential evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1