Computational investigation about photo-induced hydrogen bonding interactions and excited state double proton transfer behaviors for alkali substituted BPOH compounds
{"title":"Computational investigation about photo-induced hydrogen bonding interactions and excited state double proton transfer behaviors for alkali substituted BPOH compounds","authors":"Zibo Shen , Chang Liu , Yuanyuan Zhou , Jinfeng Zhao , Jiahe Chen","doi":"10.1016/j.cplett.2025.142021","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, given the significant influence of substituents on molecular characteristics, we focus on investigating the excited state dynamics of 2,2′-bipyridyl-3,3′-diol-5,5′-dicarboxylic acid (BPOH-COOH) derivatives. All theoretical calculations are primarily carried out using DFT and TDDFT methods. In this study, we explicitly prove that the influence of -COOR substituent with different group IA elements on the ESIPT process of BPOH system. Furthermore, we investigate excited-state double proton transfer (ESDPT) process of BPOH via analysis about our constructed S<sub>1</sub>-state potential energy surface (PES) and demonstrate the alkali-regulated stepwise ESDPT mechanism for BPOH system.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"868 ","pages":"Article 142021"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425001617","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, given the significant influence of substituents on molecular characteristics, we focus on investigating the excited state dynamics of 2,2′-bipyridyl-3,3′-diol-5,5′-dicarboxylic acid (BPOH-COOH) derivatives. All theoretical calculations are primarily carried out using DFT and TDDFT methods. In this study, we explicitly prove that the influence of -COOR substituent with different group IA elements on the ESIPT process of BPOH system. Furthermore, we investigate excited-state double proton transfer (ESDPT) process of BPOH via analysis about our constructed S1-state potential energy surface (PES) and demonstrate the alkali-regulated stepwise ESDPT mechanism for BPOH system.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.