Crafting user-centric prompts for UI generations based on Kansei engineering and knowledge graph

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-03-05 DOI:10.1016/j.aei.2025.103217
Xuejing Feng , Huifang Du , Jun Ma , Haofen Wang , Lijuan Zhou , Meng Wang
{"title":"Crafting user-centric prompts for UI generations based on Kansei engineering and knowledge graph","authors":"Xuejing Feng ,&nbsp;Huifang Du ,&nbsp;Jun Ma ,&nbsp;Haofen Wang ,&nbsp;Lijuan Zhou ,&nbsp;Meng Wang","doi":"10.1016/j.aei.2025.103217","DOIUrl":null,"url":null,"abstract":"<div><div>Text-to-image (T2I) models are emerging as a powerful tool for designers to create user interface (UI) prototypes from natural language inputs (i.e., prompts). However, the discrepancy between designer inputs and model-preferred prompts makes it challenging for designers to consistently deliver effective results to end users. To bridge this gap, we introduce a novel hybrid method that assists designers in crafting user-centric prompts for T2I models, ensuring that the generated UIs align with end-user expectations. First, this method merges text mining and Kansei Engineering (KE) to analyze online user reviews and construct a Knowledge Graph (KG), mapping the intricate relationships between diverse affective requirements of users, design features, and corresponding text prompts for UI generation. Then, our approach automatically transforms designer inputs into model-preferred prompts through entity mention recognition and entity linking during the human-AI collaborative design process. Finally, we validate the proposed approach with a case study on automotive human–machine interface design. Experimental results demonstrate that our approach achieves high performance in perceived efficiency, satisfaction, and expectation disconfirmation. Overall, this study represents a step forward in integrating human and AI contributions in design and innovation within engineering disciplines, enabling AI to inspire, develop, and reinforce human creativity from a human factors perspective.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103217"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001107","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Text-to-image (T2I) models are emerging as a powerful tool for designers to create user interface (UI) prototypes from natural language inputs (i.e., prompts). However, the discrepancy between designer inputs and model-preferred prompts makes it challenging for designers to consistently deliver effective results to end users. To bridge this gap, we introduce a novel hybrid method that assists designers in crafting user-centric prompts for T2I models, ensuring that the generated UIs align with end-user expectations. First, this method merges text mining and Kansei Engineering (KE) to analyze online user reviews and construct a Knowledge Graph (KG), mapping the intricate relationships between diverse affective requirements of users, design features, and corresponding text prompts for UI generation. Then, our approach automatically transforms designer inputs into model-preferred prompts through entity mention recognition and entity linking during the human-AI collaborative design process. Finally, we validate the proposed approach with a case study on automotive human–machine interface design. Experimental results demonstrate that our approach achieves high performance in perceived efficiency, satisfaction, and expectation disconfirmation. Overall, this study represents a step forward in integrating human and AI contributions in design and innovation within engineering disciplines, enabling AI to inspire, develop, and reinforce human creativity from a human factors perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Fast detection of short circuits in copper electrolytic refining with PCA and a branching perceptron Mitigating potential risk via counterfactual explanation generation in blast-based tunnel construction A multiple-criteria sensor selection framework based on qualitative physical models Crafting user-centric prompts for UI generations based on Kansei engineering and knowledge graph Predicting the performance status of aero-engines using a spatio-temporal decoupled digital twin modeling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1