{"title":"Optimal configuration method of hydrogen energy system for coordinated operation of multi-type electrolyzers for new energy consumption","authors":"Xie Jinyong, Zhang Yi, Xiang Mengru, Zhang Minghui","doi":"10.1016/j.ijhydene.2025.02.438","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of absorption of new energy, such as wind and solar power, into the power system is becoming increasingly serious. How to improve the economic benefits of hydrogen energy system while using it to help the absorption of new energy is a practical problem that needs to be addressed in the development of hydrogen-electric coupling. The paper proposes a method for optimizing the capacity of a hydrogen energy system through the cooperative operation of alkaline electrolyzers and proton exchange membrane electrolyzers. First, a wind-solar-hydrogen energy system is constructed, and the mechanisms of each component are analyzed. Second, considering the operational characteristics of the electrolyzer, a power distribution strategy for the hybrid electrolyzers is proposed. Subsequently, the optimal configuration model of wind-solar-hydrogen energy system is established with the maximum profit of the system as the optimization objective. Finally, an industrial park system in northwest China is taken as an example to verify the feasibility of the optimal configuration method. The results indicate that the coordinated operation of alkaline electrolyzers and proton exchange membrane electrolyzers significantly enhances the absorption of wind-solar power in the power system, demonstrating promising application potential.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"113 ","pages":"Pages 564-574"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925010274","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of absorption of new energy, such as wind and solar power, into the power system is becoming increasingly serious. How to improve the economic benefits of hydrogen energy system while using it to help the absorption of new energy is a practical problem that needs to be addressed in the development of hydrogen-electric coupling. The paper proposes a method for optimizing the capacity of a hydrogen energy system through the cooperative operation of alkaline electrolyzers and proton exchange membrane electrolyzers. First, a wind-solar-hydrogen energy system is constructed, and the mechanisms of each component are analyzed. Second, considering the operational characteristics of the electrolyzer, a power distribution strategy for the hybrid electrolyzers is proposed. Subsequently, the optimal configuration model of wind-solar-hydrogen energy system is established with the maximum profit of the system as the optimization objective. Finally, an industrial park system in northwest China is taken as an example to verify the feasibility of the optimal configuration method. The results indicate that the coordinated operation of alkaline electrolyzers and proton exchange membrane electrolyzers significantly enhances the absorption of wind-solar power in the power system, demonstrating promising application potential.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.