Chenxu Zhang , Ruoheng Sun , Jianping Yin , Yilun Hu , Qingbo Dou , Zhongbin Tang , Yinggang Miao , Yulong Li
{"title":"Failure behaviours of steel/aluminium threaded connections under impact fatigue","authors":"Chenxu Zhang , Ruoheng Sun , Jianping Yin , Yilun Hu , Qingbo Dou , Zhongbin Tang , Yinggang Miao , Yulong Li","doi":"10.1016/j.engfailanal.2025.109473","DOIUrl":null,"url":null,"abstract":"<div><div>Threaded connections work as essential components in engineering structures, covering multiple industries such as aerospace and construction. However, they are frequently exposed to complex loadings of dynamic and impact loads, which even result in unexpected fatigue failure. In this study, we modify Hopkinson tension bar technique by guiding stress wave reflection, to achieve controllable cyclically loading threaded fasteners under impact fatigue. Specimen of steel-aluminum threaded connection is specifically designed for focusing on mere aluminum thread failure. Impact fatigue of 1 kHz around are successfully conducted, enabling to precisely determine mechanical behaviors of each cyclic and impact fatigue life under varying tensile loads. It is demonstrated that, its impact fatigue life is strongly dependent on loading stress amplitude. More importantly, irreversible damage occurring in threads, presents in the overall linear-elastic phase of the connection under impact fatigue loading, leading to progressive degradation of mechanical properties and eventual failure. Failure mode is predicted experimentally and verified by finite element simulated results, of uneven load/stress distribution across threads where higher stress concentrations occur near thread root, making them more susceptible to failure and progressive degradation.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109473"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Threaded connections work as essential components in engineering structures, covering multiple industries such as aerospace and construction. However, they are frequently exposed to complex loadings of dynamic and impact loads, which even result in unexpected fatigue failure. In this study, we modify Hopkinson tension bar technique by guiding stress wave reflection, to achieve controllable cyclically loading threaded fasteners under impact fatigue. Specimen of steel-aluminum threaded connection is specifically designed for focusing on mere aluminum thread failure. Impact fatigue of 1 kHz around are successfully conducted, enabling to precisely determine mechanical behaviors of each cyclic and impact fatigue life under varying tensile loads. It is demonstrated that, its impact fatigue life is strongly dependent on loading stress amplitude. More importantly, irreversible damage occurring in threads, presents in the overall linear-elastic phase of the connection under impact fatigue loading, leading to progressive degradation of mechanical properties and eventual failure. Failure mode is predicted experimentally and verified by finite element simulated results, of uneven load/stress distribution across threads where higher stress concentrations occur near thread root, making them more susceptible to failure and progressive degradation.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.