Efficient conversion of waterborne acoustic waves into electrical energy by using the phase-reversal Fresnel zone plate

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2025-02-27 DOI:10.1016/j.ultras.2025.107619
Ji-Zhen Liu , Zi-Bin Lin , Yong-Jing Li , Yu-Gui Peng , Bin Li , Shi-Lin Yan , Xue-Feng Zhu
{"title":"Efficient conversion of waterborne acoustic waves into electrical energy by using the phase-reversal Fresnel zone plate","authors":"Ji-Zhen Liu ,&nbsp;Zi-Bin Lin ,&nbsp;Yong-Jing Li ,&nbsp;Yu-Gui Peng ,&nbsp;Bin Li ,&nbsp;Shi-Lin Yan ,&nbsp;Xue-Feng Zhu","doi":"10.1016/j.ultras.2025.107619","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic energy harvesting assisted by metamaterial devices, deemed as a promising way of utilizing green energy, has been extensively investigated in the science and engineering communities during the past years, considering the ubiquitous sound waves in nature. To date, one of the biggest challenges in the acoustic energy harvesting lies in the improvement of efficiency and output power. In this work, we propose to use the phase reversal Fresnel zone plate (PR-FZP) for efficient acoustic energy harvesting in aquatic environment instead of using the traditional FZP. We first show in simulations that the PR-FZP generates a focusing with much larger intensity than traditional FZP at different operation frequencies and focal lengths. Then we conduct experiments and demonstrate a 141% enhancement in output power of the piezo-receiver by using PR-FZP, in comparison to the FZP case. Here the capacitor charging tests show a 162.5% enhancement in the average charging rate and a 249.3% enhancement in average charging power, in contrast to the FZP case. With the harvested acoustic energy stored in the battery, we can drive a propeller to rotate which can further induce motion underwater. Our research has significant implications for the development of sound-driven devices with versatile functionalities.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"151 ","pages":"Article 107619"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000563","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic energy harvesting assisted by metamaterial devices, deemed as a promising way of utilizing green energy, has been extensively investigated in the science and engineering communities during the past years, considering the ubiquitous sound waves in nature. To date, one of the biggest challenges in the acoustic energy harvesting lies in the improvement of efficiency and output power. In this work, we propose to use the phase reversal Fresnel zone plate (PR-FZP) for efficient acoustic energy harvesting in aquatic environment instead of using the traditional FZP. We first show in simulations that the PR-FZP generates a focusing with much larger intensity than traditional FZP at different operation frequencies and focal lengths. Then we conduct experiments and demonstrate a 141% enhancement in output power of the piezo-receiver by using PR-FZP, in comparison to the FZP case. Here the capacitor charging tests show a 162.5% enhancement in the average charging rate and a 249.3% enhancement in average charging power, in contrast to the FZP case. With the harvested acoustic energy stored in the battery, we can drive a propeller to rotate which can further induce motion underwater. Our research has significant implications for the development of sound-driven devices with versatile functionalities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Selective focusing through target identification and experimental acoustic signature extraction: Through-aberration experiments Efficient conversion of waterborne acoustic waves into electrical energy by using the phase-reversal Fresnel zone plate Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism Spectral analysis of photoacoustic ultrasound generation in metal-polymer layered structures using a semi-analytical approach Quantitative analysis of variation in photoacoustic guided wave characteristics with bone optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1