Liupeng Fu , Xilin Shi , Jinyang Fan , Peng Li , Shijie Zhu , Xinxing Wei , Kun Yang
{"title":"Determination of ultimate operating pressure for hydrogen storage in high impurity salt caverns based on gas-structure-interaction model","authors":"Liupeng Fu , Xilin Shi , Jinyang Fan , Peng Li , Shijie Zhu , Xinxing Wei , Kun Yang","doi":"10.1016/j.ijhydene.2025.02.278","DOIUrl":null,"url":null,"abstract":"<div><div>Salt cavern hydrogen storage (SCHS) represents one of the most promising options for the large-scale underground storage of hydrogen. A complex gas-structure interaction (GSI) occurs between hydrogen as a gas and salt caverns. In this paper, a hydrogen permeation GSI model considering creep of surrounding rock is proposed, and the effects of the variation of the lower and upper limits of internal hydrogen pressure (IHP) on the tightness and stability of hydrogen storage in the S6 salt cavern are discussed. The findings indicate that as the lower limit of IHP diminishes, both the hydrogen permeability and the maximum displacement exhibit an upward trend. Conversely, as the upper limit of IHP rises, the hydrogen permeability increases while the maximum displacement declines. For S6 salt caverns, it is imperative that the upper limit IHP does not fall below 7 MPa, and the lower limit IHP should not be less than 16 MPa and not be more than 18 MPa. Furthermore, the permeation percentage of SCHS increases with the interlayer permeability, exhibiting a clear nonlinear relationship. When the permeability of the interlayer is 1e<sup>−18</sup> m<sup>2</sup>, the permeation percentage after 10 years of operation is 21.3%, which is more than twice the critical value. This indicates that S6 cavern hydrogen storage is not feasible when the interlayer permeability is greater than 1e<sup>−18</sup> m<sup>2</sup>.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"113 ","pages":"Pages 685-702"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925008560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Salt cavern hydrogen storage (SCHS) represents one of the most promising options for the large-scale underground storage of hydrogen. A complex gas-structure interaction (GSI) occurs between hydrogen as a gas and salt caverns. In this paper, a hydrogen permeation GSI model considering creep of surrounding rock is proposed, and the effects of the variation of the lower and upper limits of internal hydrogen pressure (IHP) on the tightness and stability of hydrogen storage in the S6 salt cavern are discussed. The findings indicate that as the lower limit of IHP diminishes, both the hydrogen permeability and the maximum displacement exhibit an upward trend. Conversely, as the upper limit of IHP rises, the hydrogen permeability increases while the maximum displacement declines. For S6 salt caverns, it is imperative that the upper limit IHP does not fall below 7 MPa, and the lower limit IHP should not be less than 16 MPa and not be more than 18 MPa. Furthermore, the permeation percentage of SCHS increases with the interlayer permeability, exhibiting a clear nonlinear relationship. When the permeability of the interlayer is 1e−18 m2, the permeation percentage after 10 years of operation is 21.3%, which is more than twice the critical value. This indicates that S6 cavern hydrogen storage is not feasible when the interlayer permeability is greater than 1e−18 m2.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.