{"title":"Cell thermal modeling and muscle oxygenation measurement in sports based on thermal radiation infrared spectroscopy and sensors","authors":"Hong Yang , Qiang Gao","doi":"10.1016/j.tsep.2025.103466","DOIUrl":null,"url":null,"abstract":"<div><div>Cell thermal modeling and muscle oxygenation are key indicators to evaluate athletes’ physical fitness and fatigue status. Traditional measurement methods often rely on invasive techniques, which not only inconvenience athletes, but also affect their performance. The aim of this study is to develop a non-invasive method based on thermal radiation infrared spectroscopy and sensor technology. The thermal radiation infrared spectroscopy technology and high sensitivity sensor are used to collect the thermal radiation images of athletes in different sports states. Image processing technology was used to analyze the acquired thermal radiation images, and the characteristic parameters related to cell thermal modeling and muscle oxygenation were extracted. In order to verify the effectiveness of the proposed method, we conducted a comparison experiment with the traditional intrusive measurement method. Through comparative analysis, the consistency between the measurement results based on thermal radiation infrared spectroscopy and the traditional method is evaluated. The results show that the measurement method based on thermal radiation infrared spectroscopy and sensor technology can effectively monitor cell thermal modeling and muscle oxygenation. Compared with the traditional intrusive method, this method has advantages in both accuracy and real-time performance. The thermal radiation images clearly show the heat distribution of athletes in different sports states, and the characteristic parameters obtained through image analysis are closely related to the physical state of athletes.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"60 ","pages":"Article 103466"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925002562","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Cell thermal modeling and muscle oxygenation are key indicators to evaluate athletes’ physical fitness and fatigue status. Traditional measurement methods often rely on invasive techniques, which not only inconvenience athletes, but also affect their performance. The aim of this study is to develop a non-invasive method based on thermal radiation infrared spectroscopy and sensor technology. The thermal radiation infrared spectroscopy technology and high sensitivity sensor are used to collect the thermal radiation images of athletes in different sports states. Image processing technology was used to analyze the acquired thermal radiation images, and the characteristic parameters related to cell thermal modeling and muscle oxygenation were extracted. In order to verify the effectiveness of the proposed method, we conducted a comparison experiment with the traditional intrusive measurement method. Through comparative analysis, the consistency between the measurement results based on thermal radiation infrared spectroscopy and the traditional method is evaluated. The results show that the measurement method based on thermal radiation infrared spectroscopy and sensor technology can effectively monitor cell thermal modeling and muscle oxygenation. Compared with the traditional intrusive method, this method has advantages in both accuracy and real-time performance. The thermal radiation images clearly show the heat distribution of athletes in different sports states, and the characteristic parameters obtained through image analysis are closely related to the physical state of athletes.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.