Insights into the long-term behavior of the optical polarization from the blazar 1ES 1959+650

IF 10.2 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of High Energy Astrophysics Pub Date : 2025-02-28 DOI:10.1016/j.jheap.2025.100361
K.K. Singh , A. Singh , A. Tolamatti , P.J. Meintjes , K.K. Yadav
{"title":"Insights into the long-term behavior of the optical polarization from the blazar 1ES 1959+650","authors":"K.K. Singh ,&nbsp;A. Singh ,&nbsp;A. Tolamatti ,&nbsp;P.J. Meintjes ,&nbsp;K.K. Yadav","doi":"10.1016/j.jheap.2025.100361","DOIUrl":null,"url":null,"abstract":"<div><div>A high degree of linear polarization measured in the optical emission is an important observational feature of blazars. It provides strong evidence of the presence of relativistic particles and magnetic field ordering in the non-thermal emission regions of blazars owing to the synchrotron nature of low energy radiation. Thus, the polarization studies of blazars are emerging as a promising approach to probe the particle acceleration and the physical processes involved in their broadband emission. In this work, we investigate the behavior of the optical polarization of the blazar 1ES 1959+650 measured over a decade using the spectropolarimetry (SPOL) at the Steward Observatory. We use measurements of the degree of linear polarization and angle of polarization in the wavelength range 500 - 700 nm available during the period October 1, 2008 and June 30, 2018 (MJD 54739 - 58299) from the SPOL observations. Near simultaneous photometry data in the R and V bands are also used to study the optical emission from the source. The maximum degree of linear polarization, measured as ∼ 8.5%, is significantly larger than the long term average value of ∼ 4.6%. Analysis of the light curves indicates that the optical emission from the blazar 1ES 1959+650 is highly variable and variability in the degree of linear polarization can be quantified by a fractional variability amplitude of ∼ 39% over the period of about ten years. Long term optical emission in the R and V bands is very weakly anti-correlated with the degree of linear polarization. Modeling of the polarization due to the synchrotron emission suggests that the observed degree of linear polarization can be broadly reproduced by a power law distribution of relativistic electrons gyrating in a spherical emission region permeated with chaotic and ordered magnetic fields. Variation in the measured degree of polarization may be attributed to the interplay between the two magnetic field components in the emission region. The effect of stellar emission from the host galaxy of the blazar 1ES 1959+650 on the degree of synchrotron polarization originating from the jet is also discussed.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"47 ","pages":"Article 100361"},"PeriodicalIF":10.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000424","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A high degree of linear polarization measured in the optical emission is an important observational feature of blazars. It provides strong evidence of the presence of relativistic particles and magnetic field ordering in the non-thermal emission regions of blazars owing to the synchrotron nature of low energy radiation. Thus, the polarization studies of blazars are emerging as a promising approach to probe the particle acceleration and the physical processes involved in their broadband emission. In this work, we investigate the behavior of the optical polarization of the blazar 1ES 1959+650 measured over a decade using the spectropolarimetry (SPOL) at the Steward Observatory. We use measurements of the degree of linear polarization and angle of polarization in the wavelength range 500 - 700 nm available during the period October 1, 2008 and June 30, 2018 (MJD 54739 - 58299) from the SPOL observations. Near simultaneous photometry data in the R and V bands are also used to study the optical emission from the source. The maximum degree of linear polarization, measured as ∼ 8.5%, is significantly larger than the long term average value of ∼ 4.6%. Analysis of the light curves indicates that the optical emission from the blazar 1ES 1959+650 is highly variable and variability in the degree of linear polarization can be quantified by a fractional variability amplitude of ∼ 39% over the period of about ten years. Long term optical emission in the R and V bands is very weakly anti-correlated with the degree of linear polarization. Modeling of the polarization due to the synchrotron emission suggests that the observed degree of linear polarization can be broadly reproduced by a power law distribution of relativistic electrons gyrating in a spherical emission region permeated with chaotic and ordered magnetic fields. Variation in the measured degree of polarization may be attributed to the interplay between the two magnetic field components in the emission region. The effect of stellar emission from the host galaxy of the blazar 1ES 1959+650 on the degree of synchrotron polarization originating from the jet is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
期刊最新文献
Insights into the long-term behavior of the optical polarization from the blazar 1ES 1959+650 Long pulse by short central engine: Prompt emission from expanding dissipation rings in the jet front of gamma-ray bursts Is the NANOGrav detection evidence of resonant particle creation during inflation? Szekeres universes with GUP corrections Shadows of rotating hairy black holes surrounded with quintessence and constraints from EHT observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1