A novel ferroptosis inhibitor phenothiazine derivative reduces cell death and alleviates neurological impairments after cerebral hemorrhage

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-03-02 DOI:10.1016/j.neuropharm.2025.110399
Bing-Qiao Wang , Yu-Fan Ma , Ru Chen , Guo-Qing Zhang , Qi Xie , Chang-Xiong Gong , Xiao-feng Cheng , Qin Zhang , Yuan Zhao , Shuang Zhang , Zhao-You Meng , Yi-Liang Fang , Cheng-Kang He , Yan-Jie Huang , Sen Lin , Qing-Wu Yang
{"title":"A novel ferroptosis inhibitor phenothiazine derivative reduces cell death and alleviates neurological impairments after cerebral hemorrhage","authors":"Bing-Qiao Wang ,&nbsp;Yu-Fan Ma ,&nbsp;Ru Chen ,&nbsp;Guo-Qing Zhang ,&nbsp;Qi Xie ,&nbsp;Chang-Xiong Gong ,&nbsp;Xiao-feng Cheng ,&nbsp;Qin Zhang ,&nbsp;Yuan Zhao ,&nbsp;Shuang Zhang ,&nbsp;Zhao-You Meng ,&nbsp;Yi-Liang Fang ,&nbsp;Cheng-Kang He ,&nbsp;Yan-Jie Huang ,&nbsp;Sen Lin ,&nbsp;Qing-Wu Yang","doi":"10.1016/j.neuropharm.2025.110399","DOIUrl":null,"url":null,"abstract":"<div><div>The precise etiology of brain injury induced by intracerebral hemorrhage (ICH) remains unclear. Currently, there are no effective therapeutic options available to slow down or prevent the progression of the disease. An increasing body of evidence suggests that ferroptosis plays a significant role in the development of injury related to ICH. Furthermore, pharmacological inhibition of ferroptosis has been identified as a promising therapeutic target for ICH injury. The compound 2-(1-(4-(4-methylpiperazin-1-yl)phenyl)ethyl)-10H-phenothiazine (compound-51), a derivative of promethazine, has been demonstrated to exhibit anti-ferroptosis and antioxidant properties. The aim of this study is to investigate the role and mechanism of action of compound-51 in a rat model of ICH. The <em>in vivo</em> experiments demonstrated that compound-51 significantly alleviated neurological impairments, reduced brain edema, and decreased hematoma volume. At the cellular level, compound-51 was observed to significantly enhance cellular survival and inhibit ferroptosis. Furthermore, compound-51 demonstrated a more pronounced therapeutic effect than Fer-1, without causing any injury to the heart, kidney, or liver. <em>In vitro</em> experiments demonstrated that compound-51 significantly increased cell viability and intracellular GPX4 levels, while reducing lipid peroxidation and oxidized glutathione levels. Collectively, these findings indicate that compound-51 exhibits a pronounced anti-ferroptosis function and alleviates neurological impairments in an ICH model, suggesting its potential as a new therapeutic agent for the treatment of ICH.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"271 ","pages":"Article 110399"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825001054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The precise etiology of brain injury induced by intracerebral hemorrhage (ICH) remains unclear. Currently, there are no effective therapeutic options available to slow down or prevent the progression of the disease. An increasing body of evidence suggests that ferroptosis plays a significant role in the development of injury related to ICH. Furthermore, pharmacological inhibition of ferroptosis has been identified as a promising therapeutic target for ICH injury. The compound 2-(1-(4-(4-methylpiperazin-1-yl)phenyl)ethyl)-10H-phenothiazine (compound-51), a derivative of promethazine, has been demonstrated to exhibit anti-ferroptosis and antioxidant properties. The aim of this study is to investigate the role and mechanism of action of compound-51 in a rat model of ICH. The in vivo experiments demonstrated that compound-51 significantly alleviated neurological impairments, reduced brain edema, and decreased hematoma volume. At the cellular level, compound-51 was observed to significantly enhance cellular survival and inhibit ferroptosis. Furthermore, compound-51 demonstrated a more pronounced therapeutic effect than Fer-1, without causing any injury to the heart, kidney, or liver. In vitro experiments demonstrated that compound-51 significantly increased cell viability and intracellular GPX4 levels, while reducing lipid peroxidation and oxidized glutathione levels. Collectively, these findings indicate that compound-51 exhibits a pronounced anti-ferroptosis function and alleviates neurological impairments in an ICH model, suggesting its potential as a new therapeutic agent for the treatment of ICH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Editorial Board Role of endocannabinoid neurotransmission in the insular cortex on cardiovascular, autonomic and behavioral responses evoked by acute restraint stress in rats Cuprizone-induced demyelination provokes abnormal intrinsic properties and excitatory synaptic transmission in the male mouse anterior cingulate cortex A novel ferroptosis inhibitor phenothiazine derivative reduces cell death and alleviates neurological impairments after cerebral hemorrhage Pro-inflammatory mediators sensitise transient receptor potential melastatin 3 cation channel (TRPM3) function in mouse sensory neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1