Concerns linked to highly dispersed iron anchored within graphitic carbon nitride, is it a truly promising material to drive heterogeneous photo-Fenton treatments?

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2025-03-04 DOI:10.1016/j.chemosphere.2025.144255
Simone Pellegrino, Iván Sciscenko , Fabrizio Caldera, Claudio Minero, Enzo Laurenti, Marco Minella
{"title":"Concerns linked to highly dispersed iron anchored within graphitic carbon nitride, is it a truly promising material to drive heterogeneous photo-Fenton treatments?","authors":"Simone Pellegrino,&nbsp;Iván Sciscenko ,&nbsp;Fabrizio Caldera,&nbsp;Claudio Minero,&nbsp;Enzo Laurenti,&nbsp;Marco Minella","doi":"10.1016/j.chemosphere.2025.144255","DOIUrl":null,"url":null,"abstract":"<div><div>The precipitation of iron at pH &gt; 4 is one of the main drawbacks of any Fenton-based process. Among the engineered solutions, the incorporation of iron within the wide cavities of graphitic carbon nitride (g-CN) has recently gained momentum. However, most works employing Fe-g-CN materials usually employ high H<sub>2</sub>O<sub>2</sub> concentrations (&gt;25 mM) to observe considerable pollutant abatements (without or with UV–vis light irradiation, i.e., by heterogeneous dark- or photo-Fenton processes, respectively). To gain further insights into this issue, in this work, Fe-g-CN, with different amounts of iron, were synthesised by thermal polycondensation of melamine and FeCl<sub>3</sub>·6H<sub>2</sub>O as precursors and compared its performance with the g-CN alone. Under UV-A light, a content of 0.2% w/w of iron in the g-CN was optimal to improve the oxidative performances of target pollutants (phenol and sulfamethoxazole 100 μM, respectively), higher Fe-loadings decreased the photocatalytic performances with respect to g-CN. Interestingly, this trend was inversed when adding H<sub>2</sub>O<sub>2</sub> 1 mM, being the pollutant removal by g-CN faster than that by Fe-g-CN (for phenol, k<sub>obs</sub> = 8.02 × 10<sup>−2</sup> min<sup>−1</sup> and 2.83 × 10<sup>−2</sup> min<sup>−1</sup>, respectively), opposed to expectations. Furthermore, HO<sup>•</sup>, HO<sub>2</sub><sup>•</sup> or <sup>1</sup>O<sub>2</sub> were barely detected by Electron Paramagnetic Resonance, indicating that the reactive species should oxidise the g-CN rather than react with the spin traps. Finally, although g-CN oxidation was not observed by typical characterisation techniques (such as FT-IR/ATR), we have observed 6 times more nitrates formation by illuminated Fe-g-CN than g-CN, indicating that iron enhances the self-oxidation of illuminated carbon nitrides. Our results demonstrate that iron incorporation in g-CN might be not as convenient as usually stated in the literature, as the stability of the photocatalyst is drastically reduced, releasing nitrates and possibly decreasing the material's lifetime.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"376 ","pages":"Article 144255"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525001973","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The precipitation of iron at pH > 4 is one of the main drawbacks of any Fenton-based process. Among the engineered solutions, the incorporation of iron within the wide cavities of graphitic carbon nitride (g-CN) has recently gained momentum. However, most works employing Fe-g-CN materials usually employ high H2O2 concentrations (>25 mM) to observe considerable pollutant abatements (without or with UV–vis light irradiation, i.e., by heterogeneous dark- or photo-Fenton processes, respectively). To gain further insights into this issue, in this work, Fe-g-CN, with different amounts of iron, were synthesised by thermal polycondensation of melamine and FeCl3·6H2O as precursors and compared its performance with the g-CN alone. Under UV-A light, a content of 0.2% w/w of iron in the g-CN was optimal to improve the oxidative performances of target pollutants (phenol and sulfamethoxazole 100 μM, respectively), higher Fe-loadings decreased the photocatalytic performances with respect to g-CN. Interestingly, this trend was inversed when adding H2O2 1 mM, being the pollutant removal by g-CN faster than that by Fe-g-CN (for phenol, kobs = 8.02 × 10−2 min−1 and 2.83 × 10−2 min−1, respectively), opposed to expectations. Furthermore, HO, HO2 or 1O2 were barely detected by Electron Paramagnetic Resonance, indicating that the reactive species should oxidise the g-CN rather than react with the spin traps. Finally, although g-CN oxidation was not observed by typical characterisation techniques (such as FT-IR/ATR), we have observed 6 times more nitrates formation by illuminated Fe-g-CN than g-CN, indicating that iron enhances the self-oxidation of illuminated carbon nitrides. Our results demonstrate that iron incorporation in g-CN might be not as convenient as usually stated in the literature, as the stability of the photocatalyst is drastically reduced, releasing nitrates and possibly decreasing the material's lifetime.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments A novel porous adsorbentbased on cactus powder/ionic liquid for the removal of nimesulide from wastewater Matrix preparation and workflow for microplastics analysis in soil Bio-electrochemically assisted sulfide, phosphorus, and nitrogen remediation in continuous anaerobic digestion of dairy manure with improved biogas production Natural coagulants from chestnut shells: A sustainable approach for textile wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1