Baseflow CO₂ fluxes in small tropical rivers driven by hydrological dynamics

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-03-05 DOI:10.1016/j.scitotenv.2025.179015
Daniela Vasconcelos Machado , Eduardo Duarte Marques , Andréa da Consolação de Oliveira Carvalho , Eduardo Paim Viglio , Everton Assunção Martins dos Santos , Rozane Valente Marins , Gerson Cardoso da Silva Júnior , Emmanoel Vieira Silva-Filho
{"title":"Baseflow CO₂ fluxes in small tropical rivers driven by hydrological dynamics","authors":"Daniela Vasconcelos Machado ,&nbsp;Eduardo Duarte Marques ,&nbsp;Andréa da Consolação de Oliveira Carvalho ,&nbsp;Eduardo Paim Viglio ,&nbsp;Everton Assunção Martins dos Santos ,&nbsp;Rozane Valente Marins ,&nbsp;Gerson Cardoso da Silva Júnior ,&nbsp;Emmanoel Vieira Silva-Filho","doi":"10.1016/j.scitotenv.2025.179015","DOIUrl":null,"url":null,"abstract":"<div><div>Dry season CO<sub>2</sub> fluxes were estimated for 1418 small rivers and streams in the Upper São Francisco Basin (USFB), Brazil. This first basin-scale estimate revealed a substantial contribution of 1.52 Pg C yr<sup>−1</sup> (95 % confidence interval: 1.40 to 1.64 Pg C yr<sup>−1</sup>). pCO<sub>2</sub> values, calculated from pH and total alkalinity (TA) and subsequently corrected, ranged from 66 to 20,200 μatm (2191 ± 1791 μatm; coefficient of variation of 82 %). Approximately 95 % of rivers exhibited evasive fluxes with bed friction dissipation as the dominant control on turbulence in over 85 %. Analysis of gas transfer velocity (k<sub>600</sub>) parameterizations revealed significant inter-equation differences, high spatial variability, and strong slope influence. These findings highlight the potentially role of small tropical rivers and streams in global carbon cycling and provide the first CO<sub>2</sub> emission estimate for the USFB.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"970 ","pages":"Article 179015"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725006503","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dry season CO2 fluxes were estimated for 1418 small rivers and streams in the Upper São Francisco Basin (USFB), Brazil. This first basin-scale estimate revealed a substantial contribution of 1.52 Pg C yr−1 (95 % confidence interval: 1.40 to 1.64 Pg C yr−1). pCO2 values, calculated from pH and total alkalinity (TA) and subsequently corrected, ranged from 66 to 20,200 μatm (2191 ± 1791 μatm; coefficient of variation of 82 %). Approximately 95 % of rivers exhibited evasive fluxes with bed friction dissipation as the dominant control on turbulence in over 85 %. Analysis of gas transfer velocity (k600) parameterizations revealed significant inter-equation differences, high spatial variability, and strong slope influence. These findings highlight the potentially role of small tropical rivers and streams in global carbon cycling and provide the first CO2 emission estimate for the USFB.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
A physical climate storyline for the Hercules storm in Portugal: Extreme coastal flooding in southwestern Europe under a changing climate Wastewater-borne markers of neurodegenerative disease: β-methylamino-L-alanine and aminomethylphosphonic acid Bioaccumulation of PCBs and OCPs in Antarctic phytoplankton and zooplankton: Insights into bioconcentration and biomagnification in Fildes Bay Heat exposure and respiratory diseases health outcomes: An umbrella review Concentrations, characteristics, influencing factors, and interactions of indoor and outdoor microplastics during the hot season at the intersection between tropical and subtropical zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1