Elishan Christian Braun , Daniela Mansutti , Kumbakonam R. Rajagopal
{"title":"Numerical solution of a two-dimensional rock-glacier flow model via the pressure method","authors":"Elishan Christian Braun , Daniela Mansutti , Kumbakonam R. Rajagopal","doi":"10.1016/j.matcom.2025.01.028","DOIUrl":null,"url":null,"abstract":"<div><div>Literature confirms the crucial influence on glacier and rock glacier flow of non-viscous deformations together with temperature impact. This observation suggests numerical glaciologists ought to reconsider the established mathematical modeling based on the representation of ice as a power-law viscous fluid and the Glen’s law. Along this line, we propose the numerical solution of a two-dimensional rock-glacier flow model, based on a constitutive law of second grade of complexity two, as just published for a one-dimensional set-up by two of the authors. With the representation of the composition of the rocky ice as a mixture of ice and rock and sand grains, and the inclusion of the local impact of pressure and of thermal effects, this model has allowed the reproduction of borehole measurement data from alpine glacier internal sliding motion via a similarity solution of the flow governing equations. Here, the adopted numerical procedure uses a second order finite difference scheme and imposes the incompressibility constrain up to computer accuracy via the pressure method, that we have extended from Newtonian computational fluid dynamics. This method solves the governing equations for the flow in primitive variables with the advantage that no pre-/post-processing is required; in addition, it avoids splitted solution of the Poisson equation for pressure which might be source of undesired numerical mass unbalancing. The results of a numerical test on the Murtel-Corvatsch alpine glacier flow, reporting satisfactory matching with published on-field observations, are presented.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"234 ","pages":"Pages 102-112"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000369","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Literature confirms the crucial influence on glacier and rock glacier flow of non-viscous deformations together with temperature impact. This observation suggests numerical glaciologists ought to reconsider the established mathematical modeling based on the representation of ice as a power-law viscous fluid and the Glen’s law. Along this line, we propose the numerical solution of a two-dimensional rock-glacier flow model, based on a constitutive law of second grade of complexity two, as just published for a one-dimensional set-up by two of the authors. With the representation of the composition of the rocky ice as a mixture of ice and rock and sand grains, and the inclusion of the local impact of pressure and of thermal effects, this model has allowed the reproduction of borehole measurement data from alpine glacier internal sliding motion via a similarity solution of the flow governing equations. Here, the adopted numerical procedure uses a second order finite difference scheme and imposes the incompressibility constrain up to computer accuracy via the pressure method, that we have extended from Newtonian computational fluid dynamics. This method solves the governing equations for the flow in primitive variables with the advantage that no pre-/post-processing is required; in addition, it avoids splitted solution of the Poisson equation for pressure which might be source of undesired numerical mass unbalancing. The results of a numerical test on the Murtel-Corvatsch alpine glacier flow, reporting satisfactory matching with published on-field observations, are presented.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.