{"title":"Conformal Printed High-Temperature Platinum-Rhodium Resistance Temperature Detector for Ceramic Bolts","authors":"Yuelong Li;Disheng Qiang;Fuxin Zhao;Lida Xu;Chenhe Shao;Yanzhang Fu;Qingtao Yang;Qinnan Chen;Chao Wu;Daoheng Sun","doi":"10.1109/JSEN.2025.3525522","DOIUrl":null,"url":null,"abstract":"The operation temperature detection of high-temperature hot-end components in aerospace and other fields is of great significance for operational safety; however, the higher working temperature and noninvasive in situ measurement of temperature detectors currently face significant challenges. Here, the platinum-rhodium (PtRh) conformal resistance temperature detector (CRTD) was proposed, the structure and preparation process was elaborated, and the aging sintering process of the film was explored to form a stable conductive network with high porosity. The dense surface and cross-sectional characteristics of the film were demonstrated, the lattice characteristic of PtRh was demonstrated, and the composition and valence states of the elements were characterized in detail. The high-temperature testing system was built, and the test results showed that the developed PtRh CRTD could achieve dynamic temperature detection at <inline-formula> <tex-math>$1200~^{\\circ }$ </tex-math></inline-formula>C, with a linear fitting goodness of 0.99834. The resistance drift rate of the 31 h high-temperature durability test was 1.11%/h, and the maximum full-scale error was 1.58%FS. Furthermore, the PtRh high-temperature conformal ceramic bolt was prepared and subjected to thermal shock testing. The results showed that it more accurately reflects the temperature of the structural component itself than the discrete surface mount temperature measurement method, providing a feasible solution for in situ detection of complex curved high-temperature hot-end components.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 5","pages":"8016-8023"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10876094/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The operation temperature detection of high-temperature hot-end components in aerospace and other fields is of great significance for operational safety; however, the higher working temperature and noninvasive in situ measurement of temperature detectors currently face significant challenges. Here, the platinum-rhodium (PtRh) conformal resistance temperature detector (CRTD) was proposed, the structure and preparation process was elaborated, and the aging sintering process of the film was explored to form a stable conductive network with high porosity. The dense surface and cross-sectional characteristics of the film were demonstrated, the lattice characteristic of PtRh was demonstrated, and the composition and valence states of the elements were characterized in detail. The high-temperature testing system was built, and the test results showed that the developed PtRh CRTD could achieve dynamic temperature detection at $1200~^{\circ }$ C, with a linear fitting goodness of 0.99834. The resistance drift rate of the 31 h high-temperature durability test was 1.11%/h, and the maximum full-scale error was 1.58%FS. Furthermore, the PtRh high-temperature conformal ceramic bolt was prepared and subjected to thermal shock testing. The results showed that it more accurately reflects the temperature of the structural component itself than the discrete surface mount temperature measurement method, providing a feasible solution for in situ detection of complex curved high-temperature hot-end components.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice