Ang Li;Bingxuan Li;Lei Fang;Xiaoyun Zhou;Qingguo Xie;Peng Xiao
{"title":"Enhancing Energy-Based Scatter Estimation Using Energy Spectra Modification in PET","authors":"Ang Li;Bingxuan Li;Lei Fang;Xiaoyun Zhou;Qingguo Xie;Peng Xiao","doi":"10.1109/TRPMS.2024.3495219","DOIUrl":null,"url":null,"abstract":"Energy-based scatter estimation methods have illustrated promising results in recent literature. Accurate estimation of energy probability density function of scattered photons (PDF-SC) is essential for precise scatter estimation and avoiding bias in reconstructed images. This article presents a novel method, referred to as energy spectra modification (ESM), to precisely estimate position-dependent local PDF-SC, which improves the accuracy of scatter estimation. ESM involves an iterative process to deblur local energy spectra, with the starting point constructed using an initial PDF-SC derived from global energy spectra. The scattered component of the deblurred energy spectrum is reblurred and normalized to estimate the local PDF-SC. We validated this approach through Monte Carlo simulations using a bladder phantom, an image quality phantom, and a cylindrical phantom. Comparative analyses were conducted against the traditional method employing global PDF-SC, a recent advancement, and the single scatter simulation method. The results demonstrated that our method effectively reduced activity bias of the global PDF-SC approach across various energy resolutions, windows, target size, and count levels. It achieved this with a comparable computational load and without hyperparameter modification.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"347-361"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752594/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Energy-based scatter estimation methods have illustrated promising results in recent literature. Accurate estimation of energy probability density function of scattered photons (PDF-SC) is essential for precise scatter estimation and avoiding bias in reconstructed images. This article presents a novel method, referred to as energy spectra modification (ESM), to precisely estimate position-dependent local PDF-SC, which improves the accuracy of scatter estimation. ESM involves an iterative process to deblur local energy spectra, with the starting point constructed using an initial PDF-SC derived from global energy spectra. The scattered component of the deblurred energy spectrum is reblurred and normalized to estimate the local PDF-SC. We validated this approach through Monte Carlo simulations using a bladder phantom, an image quality phantom, and a cylindrical phantom. Comparative analyses were conducted against the traditional method employing global PDF-SC, a recent advancement, and the single scatter simulation method. The results demonstrated that our method effectively reduced activity bias of the global PDF-SC approach across various energy resolutions, windows, target size, and count levels. It achieved this with a comparable computational load and without hyperparameter modification.